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Université de Mons, Belgium

Pr. Jean-François Raskin
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aux cheveux longs (finalement, je ne sais pas si je dois dire merci), à Soucré
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Abstract

Verification and synthesis are successful applications of computer science, based

on extensive formal bases. Model checking is supported by powerful tool suites

and is now an essential part of many high-end industrial processes. Synthesis is

promising and should have important long-term impact.

One of the crucial changes over the last decade is the evolution from Boolean

to quantitative specifications, giving more expressive models that describe quality

of service or performance of systems. However, current models cannot account

for trade-offs and interplays between quantitative aspects, which naturally arise

in many applications. This thesis participates in the shift from single-criterion

quantitative models toward multi-criteria ones. Our study is focused on the

game-theoretic framework, modeling the interactions between a reactive system

and its environment as a competitive two-player game.

Our contributions are of two kinds. On the one hand, we obtain new re-

sults on existing models and improve their tractability. On the other hand, we

introduce novel models with interesting properties. Questions we address in-

clude deciding the winner in games with rich winning objectives, establishing

efficient synthesis algorithms, bounding the memory needs for strategies, and

other related problems.

We cover three axes of research. First, we study games with multi-dimension

quantitative objectives. We prove surprising complexity results for the total-

payoff and establish an optimal synthesis algorithm for mean-payoff and energy

objectives along with a parity condition. Second, we introduce window objec-

tives, which provide a framework to reason about quantitative behaviors in time

frames. Those new objectives also approximate classical ones while avoiding a

vii
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long-standing complexity barrier. Finally, we develop the novel concept of beyond

worst-case synthesis, combining worst-case and expected value requirements for

synthesized system controllers. We study it for two important quantitative set-

tings: mean-payoff and shortest path. For the former, we show that it provides

additional expressive power for free complexity-wise.

Keywords: formal methods, computer-aided verification and synthesis, game

theory, quantitative models, stochastic models, weighted games, Markov decision

processes, multi-dimension games, window games, beyond worst-case synthesis,

complex systems
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CHAPTER 1
Introduction

Verification and Synthesis via Game Theory � Goals and Contributions � Other

Related Work

Reactive computer systems bear inherent complexity due to continuous interac-

tion with their environment. While their correctness is often crucial, the design

of such safety-critical systems is notoriously hard.

Formal verification and synthesis have proved to be successful applications

of computer science, supporting the construction of provably safe system con-

trollers. Many techniques take roots in the game-theoretic framework, modeling

the interactions between the system and its environment as a competitive game.

We open this thesis with a brief presentation of the core concepts of the

research field, partly inspired by [Ran13]. Afterwards, we discuss the main di-

rection of our work, which is the study of multi-criteria quantitative models in a

broad sense. We summarize our most important contributions. Finally, we close

the chapter by mentioning other related work, exploring complementary areas

of the field.

1



2 Chapter 1 – Introduction

1.1 Verification and Synthesis via Game Theory

Computers are like Old Testament gods; lots of rules and no mercy.

Joseph Campbell, The Power of Myth.

It is no wonder that this judgment was enacted by a man renowned for

his work on myths. Indeed, a common myth of the Digital Age is the one of

foolproof computer systems. The quote says it all: computers are rigid systems,

bent to the mathematical rules of their programs. And they have no mercy: if

those programs are defective, then failures are bound to happen, with potentially

unforeseen consequences.

This thesis participates in a global research effort to provide formal bases and

tools to detect, avoid and prevent such failures. We present the general context

in the following pages.

Reactive systems. Reactive systems, as named by Harel and Pnueli [HP85],

are computer systems that continuously interact with their environment. They

are now ubiquitous and their correctness is often critical. Think about control

programs for power plants, ABS for cars, railway traffic control systems, etc. In

general, the environment of those systems cannot be controlled. Therefore, we

are in dire need of system controllers capable of sustaining a safe behavior of the

system despite the potentially adversarial effects of the environment.

Formal methods. The construction of safe and efficient controllers for reactive

systems is difficult and classical development techniques based on testing and

prototyping are inadequate. Good developers know that testing do not capture

the whole picture: never will it proves that no flaw is present in the considered

system. So for critical systems, so-called formal methods are essential to assert

the correctness of system controllers. That means using mathematical tools to

prove that the system follows a given specification modeling desired behaviors.

To improve the design and verification of system controllers, model checking

techniques were introduced in the 80s through the work of Clarke, Emerson,

Vardi, Wolper, and others [CE81,VW86,CGP00]. A comprehensive book on the

subject was recently authored by Baier and Katoen [BK08]. Most techniques are
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based on logic and automata, which became popular thanks to seminal works

by Büchi, Rabin, etc [Büc60,Rab69]. Model checking has proved relevant in the

high-tech industry (e.g., Intel, IBM, Airbus). Model checking is a verification

method: it applies a posteriori, checking that a preexisting formal model of a

controller satisfies a given specification.

However, it is most of the time desirable to start from the specification and

automatically design a controller from it, in such a way that desired properties are

proved to be maintained in the process, no matter how the environment behaves.

This is the more ambitious (and considerably harder) synthesis problem, already

envisioned in the context of circuits by Alonzo Church [Chu57] and transposed

in the context of reactive systems by Ramadge and Wonham [RW87], or Pnueli

and Rosner [PR89], on which an important part of the research community is

currently focusing its effort.

Game theory. Game theory provides well-suited foundations for this task. It is

a wide field with extensive formal bases and applications in numerous disciplines

as diverse as economics, biology, operations research and, of course, computer sci-

ence. Games model interactions between cooperating and/or competiting players

who play to the best of their abilities in order to satisfy individual or common

objectives. While interesting works of Borel [BV38], Zermelo [Zer13] and even

Cournot [Cou38] precede them, von Neumann and Morgenstern are generally

considered as the “Founding Fathers of (Modern) Game Theory” through their

1944 book entitled Theory of Games and Economic Behavior [vNM44]. Another

seminal book on the subject was authored by Osborne and Rubinstein [OR94].

The synthesis problem as a game. In this thesis, we focus on two-player

games played on graphs. See for example work by Thomas et al. [Tho95,GTW02].

One player represents the controller and its opponent represents the environment.

Players alternatively decide how to move a pebble on a graph where vertices

model states of the system to control. Their moves represent actions over the

system. They choose how to move the pebble according to strategies, creating an

infinite sequence of states called play that represents the behavior of the system.

The goal of the controller is to enforce a given specification, encoded through a

winning objective: a play is winning if it belongs to a predefined set of acceptable

plays. The goal of the environment, considered antagonistic, is to prevent the

controller from enforcing its specification.
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Throughout this thesis, we focus on the game-theoretic formalism: we do not

continuously refer to the system controller and its environment but instead to

player 1 (P1) and player 2 (P2).

In general, we are looking for winning strategies for P1: strategies ensuring

that the outcome of the game will be a winning play, no matter what is the strat-

egy followed by P2. In our context, establishing winning strategies for P1 cor-

responds to synthesizing implementable models of provably correct controllers.

The synthesis process is depicted in Fig. 1.1.

system
description

environment
description

informal
specification

model as
a game

model as
winning

objectives

synthesis

is there a
winning

strategy ?

empower system
capabilities
or weaken

specification
requirements

strategy =
controller

no yes

Figure 1.1: Controller synthesis through game theory: process.

Such game-theoretic formulations have proved useful in the context of synthe-

sis [Chu62, RW87, PR89], verification [AHK02], refinement [HKR02], and com-

patibility checking [dAH01] of reactive systems, as well as to obtain algorithms

for checking emptiness of tree automata [Tho97].

Decision problems and strategy synthesis. The focus of our work is mostly

of fundamental nature: we investigate the complexity and expressiveness of sev-
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eral classes of games and objectives. The three classical questions, given a game,

an objective and an initial state of the game, are whether one of the player can

guarantee victory, and if so, which one and how?

Interestingly, very general results by Donald A. Martin guarantee determi-

nacy for most game models useful in verification and synthesis [Mar75, Mar98]:

that is, for any initial state, either P1 can ensure a victory, or P2 can ensure

a victory. In particular, the objectives studied in this thesis define Borel sets,

hence Martin’s theorems apply and guarantee determinacy. This solves the first

question.

Now for the second question: can we decide who wins a game and how compu-

tationally hard is it to decide it? This decision is sometimes referred to as solving

the game. It is a central question for us: we want to assess if P1 has a winning

strategy (i.e., if there exists a correct controller) or not. In practice, decidability

of the problem is not enough. It also needs to be tractable to preserve practi-

cal applicability of the models. Precise complexity classes are investigated, and

large effort is put in efficient algorithms and data structures. In the following, we

assume the reader to be familiar with basic notions of computational complexity.

If not the case, we suggest comprehensive books by Papadimitriou [Pap94] or

Sipser [Sip97].

Lastly, assuming there exists a winning strategy for P1, it is crucial to deter-

mine how complex such a strategy needs to be and to be able to actually synthe-

size it. The realm of strategies is vast: they may use memory (i.e., depend on

the past), whether finite or infinite; they may prescribe actions deterministically

or randomly, etc. Characterization of strategies requirements is of particular

importance as the synthesis process aims at implementing controllers from those

strategies. We favor simple strategies whenever possible: the corresponding con-

trollers will be cheaper to produce and easier to maintain.

Qualitative specifications. Traditionally, ω-regular objectives have been stud-

ied [GTW02]. In this Boolean setup, a play is either correct or incorrect, with

no interpretation of how well it behaves.

Let us mention some popular Boolean - or qualitative - objectives (a broader

presentation is available in Sect. 2.2.1). The reachability objective asks to visit

(at least once along a play) a given target set of states. Reachability games can

be solved in linear time using attractors and they are P-complete [Bee80,Imm81].
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The Büchi objective requires infinitely repeated visits of a target set. Its

complexity has attracted much effort for a long-time [EJ91, McN93, Zie98] and

an algorithm quadratic in the number of states has been recently introduced by

Chatterjee and (M.) Henzinger [CH12]. The problem is also P-complete as it

subsumes reachability games.

In parity games, states are mapped to priorities (natural numbers) and the

objective requires that the least priority seen infinitely often along a play is

even. This is a canonical way to encode ω-regular specifications [Tho97]. Parity

games belong to the intriguing class of problems which are in NP ∩ coNP but

not known to be in P [EJ88,EJS93,Zie98,KKV01]. The complexity class can be

refined to UP∩ coUP (subclass of NP∩ coNP restricted to unambiguous Turing

machines [Pap94]), as presented by Jurdziński in [Jur98]. Parity games also

subsume modal µ-calculus model checking [EJS93].

In all the above objectives, pure memoryless strategies (i.e., using no memory

and choosing actions deterministically) are known to suffice for both players.

Quantitative specifications. While qualitative specifications are sufficient to

model yes-no properties (e.g., avoiding deadlocks), research effort has recently

focused on quantitative extensions to model resource constraints such as power

consumption, response time or buffer size [CdAHS03, BCHJ09]. To that end,

games are played on weighted graphs and quantitative measures map plays to

payoffs in the numerical domain, ranking their performance.

In that setting, the traditional decision problem is, given a game, a payoff

function, a worst-case threshold in the numerical domain, and an initial state,

whether P1 has a strategy ensuring a payoff at least equal to the worst-case

threshold against any strategy of its adversary. This is called the worst-case

threshold problem. We briefly mention several classical quantitative objectives.

Extended discussion of the corresponding results is presented in Sect. 2.3.2.

One-dimension weights were considered for a variety of quantitative winning

objectives such as mean-payoff [Gil57, LL69, EM79, GKK88, ZP96, Jur98, Pis99,

LP07,BV07,BCD+11], total-payoff [GZ04,GS09] or energy [CdAHS03,BFL+08,

CHKN12]. In all those settings, pure memoryless strategies exist for both players

and the decision problem is in UP ∩ coUP, with no known polynomial-time

algorithm.
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Progress has been made to lift this setting to multi-dimension weights (mod-

eling several quantitative aspects) for the mean-payoff and the energy objec-

tives [CDHR10, VR11, VCD+12]. This shows considerably added complexity,

reflected by the coNP-completeness of deciding the winner and the need for

infinite-memory strategies for P1 in the mean-payoff case.

Conjunction between parity and one-dimension quantitative objectives has

been studied in the literature: mean-payoff parity [CHJ05,BMOU11] and energy

parity [CD12]. Again, both are in NP ∩ coNP. However, exponential memory

suffices in energy parity games whereas mean-payoff parity games require infinite

memory for P1.

Some novel quantitative measures have been recently introduced in order

to represent more accurately important aspects of real-world reactive systems,

or to provide increased tractability. For example, two complementary models

of energy consumption were studied. In [BHR14], Boker et al. define battery

transition systems, a discretization of a continuous battery model. In [BCKN12],

Brázdil et al. present consumption games, an alternative to energy games.

Stochastic environments. In order to synthesize adequate controllers, one

first has to establish reasonable assumptions on the behavior of the environment

of the system. In traditional games, the environment is seen as an antagonistic

adversary, aiming at failure of the system or minimization of its performance.

The goal of verification and synthesis techniques is thus to provide strict worst-

case guarantees on the performance of the system.

Another common standpoint, used in decision making and optimization, is

to assume the environment to be purely stochastic. This is the setting of models

known as Markov decision processes [Ber95].

For qualitative objectives, it is natural to relax the notion of (surely) winning

strategy and consider almost-surely winning strategies: instead of requiring all

outcomes to satisfy the specification, we ask that the specification is satisfied

with probability one against the stochastic adversary. Markov decision processes

with reachability objectives [CJH03,BK08], Büchi objectives [CH12], and parity

objectives [CY90,dA97,CJH04] can all be solved in polynomial time. In all cases,

memoryless strategies are sufficient.

In Markov decision processes with quantitative objectives, the classical ques-

tion is to optimize some overall expected performance, without guarantee on
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individual plays. The corresponding decision problem, named expected value

threshold problem, was notably studied for the mean-payoff [Put94,FV97,Gim07],

the total-payoff [FV97] and the shortest path [BT91,dA99].

1.2 Goals and Contributions

Research objective. Prevalent models permit to consider different quantitative

aspects separately but not to look at their interplay and the resulting trade-offs.

When studying resource usage and performance output, it is often unavoidable

to account for such interplays. Indeed, achieving a given performance level on

some aspect often comes at a cost on other ones (e.g., decreasing the response

time may require additional computing power and energy consumption).

Our thesis participates in a shift from single-criterion quantitative models

to multi-criteria ones, developing fundamental advances in this direction. For

example, we pursue the previously discussed extension of quantitative models

to the multi-dimension context. This is however not the only kind of multi-

criteria approach we consider: we also mix problems of different natures, such

as worst-case and expected value threshold problems.

Contributions. We briefly summarize our main contributions in the following

paragraphs. A more detailed discussion of our results and their relation with

state-of-the-art work in the field is presented in Chap. 3.

Our contributions are of two kinds. First, we obtain some new results on

existing models and improve their tractability. Second, we introduce novel models

with interesting properties. Questions we address include deciding the winner in

games with rich winning objectives, establishing efficient synthesis algorithms,

bounding the memory needs for strategies, and other related problems.

Multi-dimension quantitative objectives. Let us recall that multi-dimen-

sion mean-payoff games require infinite memory in general. To ensure controller

implementability, the relevant problem is the construction of finite-memory win-

ning strategies.

Together with Krishnendu Chatterjee and Jean-François Raskin [CRR12a,

CRR12b,CRR14], we study games with multi-dimension mean-payoff and energy

objectives along with a parity objective. This combination is both novel and

appealing for practical applications. For example, it can express specifications
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such as “eventually granting requests while maintaining a minimal response time

and keeping the energy consumption lower than some threshold”.

We prove tight bounds on memory, significantly improving previous results.

We establish an optimal symbolic and incremental synthesis algorithm that uses

antichains as efficient data structures [DDHR06]. We also study when random-

ness can be used to replace memory in related controllers to provide conceptually

simpler implementations.

We settle the case of the total-payoff in joint work with Krishnendu Chatter-

jee, Laurent Doyen and Jean-François Raskin [CDRR13a,CDRR13b]: we prove

the undecidability of the synthesis problem in multi-dimension and highlight the

need for alternative quantitative measures.

Timing guarantees and tractable approximations. Existing objectives are

not sufficient for specifications sensitive to timing issues. Mean-payoff and total-

payoff characterize long-run behaviors over infinite plays. A desired property

for many practical problems is to provide bounds on time frames in which an

acceptable behavior can be witnessed (e.g., income). To overcome this limitation,

we introduce a new family of objectives, called window objectives, that strengthen

quantitative specifications with such timing guarantees [CDRR13a, CDRR13b].

This is joint work with Krishnendu Chatterjee, Laurent Doyen and Jean-François

Raskin.

Additionally to increased modeling power, those objectives show computa-

tional efficiency. As discussed, some tractability issues arise for the classical ob-

jectives. For the one-dimension setting, both mean-payoff and total-payoff games

are known to be in UP ∩ coUP but whether they can be solved in determinis-

tic polynomial time is a long-standing and important question. For the multi-

dimension setting, we show that total-payoff is undecidable. We prove that win-

dow objectives are conservative approximations of the classical measures, with

complexities breaking the previous barriers: in one-dimension, window games

are computable in deterministic polynomial time, and in multi-dimension, we

provide a decidable fragment with optimal algorithms.

Beyond the worst-case. In collaboration with Véronique Bruyère, Emmanuel

Filiot and Jean-François Raskin, we establish a framework for the analysis of

performance trade-offs with regard to the nature of the environment [BFRR13,

BFRR14a,BFRR14b].
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On the one hand, classical games involve an environment which is purely

antagonistic and ask for strict guarantees. On the other hand, Markov decision

processes model purely stochastic environments: the aim is then to optimize the

expected payoff, with no guarantee on individual plays. Up to now, both aspects

could only be considered separately. In practice, a natural wish is to achieve a

reasonable trade-off between them: nice expected performance in the everyday

situation while ensuring a strict (but relaxed) performance threshold even in the

event of very bad (while unlikely) circumstances. This is exactly the goal of the

beyond worst-case synthesis problem.

We study it for two important quantitative settings: mean-payoff and shortest

path. In both cases, we establish synthesis algorithms with optimal complexities

and provide tight memory bounds. For the mean-payoff we manage to provide

additional modeling power while maintaining the same tractability level as the

simpler worst-case setting, though the problem is conceptually much harder to

tackle. This is particularly interesting as the mean-payoff is one of the most

widely used quantitative measures.

Thesis outline. This thesis is divided in five parts.

◦ Part I - Controller Synthesis via Game Theory. In Chap. 2, we present the

necessary background: game models, classical objectives, etc. In Chap. 3,

we give a detailed overview of our main contributions. The technical details

are spread over the three following parts.

◦ Part II - Multi-Dimension Objectives. In Chap. 4, we discuss state-of-the-

art results on multi-dimension quantitative games. We also establish our

undecidability result for multi-dimension total-payoff games. In Chap. 5,

we present the memory bounds. The synthesis algorithm is developed

in Chap. 6. Finally, the question of randomness instead of memory is

addressed in Chap. 7.

◦ Part III - Window Objectives. We introduce window objectives and study

their relation with classical objectives in Chap. 8. Our results for one-

dimension games are presented in Chap. 9. In Chap. 10, we discuss the

multi-dimension setting.

◦ Part IV - Beyond Worst-Case Synthesis. The beyond worst-case frame-

work is defined in Chap. 11. We study it for the mean-payoff function in
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Chap. 12 and for the shortest path in Chap. 13.

◦ Part V - Discussion. In Chap. 14, we briefly summarize our results and

the remaining open questions. Then, we review several promising research

directions linked to our research.

1.3 Other Related Work

We very briefly mention some complementary research directions. Extension

or adaptation of our results in those contexts could be interesting questions to

address. This list is obviously (and knowingly) far from complete.

Timed and hybrid systems. In classical graph games, every change is discrete.

It is sometimes necessary to consider real-time constraints for embedded systems.

Alur and Dill have introduced timed automata to model the continuous character

of time [AD90,AD94]: they extend finite automata with real-valued clocks. This

has been the start of a fruitful research topic, which has attracted focus of

the community over the last years (see for example Brihaye’s thesis [Bri06]).

Powerful tool suites exist for the model checking of real-time systems, such as

Uppaal [BDL+06].

The more general theory of hybrid automata was introduced by (T.A.) Hen-

zinger to integrate arbitrary derivative of continuous variables [Hen96]. While

many problems are undecidable for the general class of hybrid automata, semi-

algorithms are provided in tools such as HyTech [HHWT97]. Another interesting

extension of timed automata is the model of timed games [AMP95, AMPS98,

San13].

Multi-player games. We focus on games between two players, respectively

representing a system controller and the environment of the system. In some

applications, it is useful to account for multiple interdependent components, with

objectives that are not necessarily antagonistic. This is the focus of multi-player

non-zero-sum games. See for example [GU08,Umm10,Bre13,De 13].

Imperfect information. Our setting is one of perfect information: both play-

ers know exactly what is the current state of the system at all times. In some

contexts, this assumption is too strong: a system controller may only be able

to obtain partial information about the state of the controlled system. This

extension proves to be much harder to tackle, involving exponential blow-ups
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due to subset constructions. For example, imperfect information parity games

are EXPTIME-complete [Rei84, CDHR06]. For quantitative objectives, decid-

ability is easily lost: mean-payoff games are undecidable in full generality and

restrictions need to be introduced to regain tractable models [DDG+10,HPR13].

Concurrent games. In this thesis, we consider turn-based games: players

choose their actions alternatively. Games where players choose actions concur-

rently have been studied for a variety of winning objectives [dAHK98, Cha07a,

BBMU12,KLST12].

Probabilistic systems and stochastic games. A number of studies on the

verification of probabilistic systems (like Markov decision processes) for multi-

objective properties were recently developed [EKVY08,KP13], along with tools

such as the probabilistic model checker PRISM [KNP11].

On the same note, the extension of two-player games to stochastic transition

functions was studied both for qualitative objectives [Eve57, Cha07b] and for

quantitative ones [Sha53,LL69,MN81,TV87,CFK+13b], as well as for conjunc-

tion of both kinds [CFK+13a,CDGO14].
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CHAPTER 2
Background

Games, Markov Decision Processes and Markov Chains � Objectives and Deci-

sion Problems � Some Classical Objectives

This chapter presents the fundamental models studied in this thesis. In games,

one player is faced to an antagonistic adversary. In Markov decision processes,

the adversary is stochastic. Markov chains are purely stochastic processes.

Players try to achieve winning objectives. They behave according to well-

chosen strategies. Strategies are analyzed with regard to several criteria such as

their worst-case payoff guarantee, their expected payoff in a stochastic environ-

ment, their memory requirements and so on.

We illustrate many usual winning objectives and review important results

over the related models. We notably discuss reachability, Büchi, parity, mean-

payoff, total-payoff, shortest path and energy objectives. This chapter focuses

on games with a single or one-dimension objective.

15
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2.1 Games, Markov Decision Processes and Markov

Chains

All the models studied in this thesis are based on directed graphs. The vertices

are called states. A pebble is placed in an initial state and moved from state to

state, creating an infinite path in the graph, called play. How the pebble moves

depends on who possesses the origin state. States can either belong to a player

or be stochastic. In the first case, the player chooses where to move the pebble

according to his strategy. In the second one, the pebble is moved according to a

predefined probability distribution over successor states in the graph.

Players choose their actions in order to create plays that belong to a set of

winning plays, named winning objective. We mostly focus on two-player games

with zero-sum objectives. That is, the first player wins if he achieves some ob-

jective while the second player wins if the first player fails. Some objectives are

quantitative: plays are mapped to numerical values. The objective of the first

player is then to ensure a value higher (resp. lower) than a given threshold while

the second player tries to minimize (resp. maximize) this value.

In this section, we present the basic notions that formalize these concepts.

We focus on the classical framework. We refine or extend some concepts in the

following chapters.

2.1.1 Weighted Graphs and Plays

Definition 2.1 (Graph). A weighted directed graph is a tuple G = (S,E,w)

where (i) S is the set of vertices, called states; (ii) E ⊆ S×S is the set of directed

edges; and (iii) w : E → Z is the weight labeling function.

Since we only work with directed graphs in the following, we omit the adjec-

tive and talk about weighted graphs. Also, in the sequel, we almost exclusively

work with finite graphs, i.e., graphs for which the set of states S is finite. Given

a state s ∈ S, we denote by Succ(s) = {s′ ∈ S | (s, s′) ∈ E} the set of succes-

sors of s by edges in E. We assume that graphs are deadlock-free, i.e., for all

s ∈ S, Succ(s) 6= ∅. We denote by W the largest absolute weight that appears

in the graph. We assume that weights are encoded in binary and denote by

V = dlog2W e the number of bits of their encoding. Throughout this thesis,
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we differentiate between pseudo-polynomial algorithms (polynomial in W ) and

truly-polynomial algorithms (polynomial in V ).

Definition 2.2 (Play). A play in G from initial state sinit ∈ S is an infinite

sequence of states π = s0s1s2 . . . such that s0 = sinit and (si, si+1) ∈ E for all

i ≥ 0.

The prefix up to the n-th state of π is the finite sequence π(n) = s0s1 . . . sn.

We resp. denote the first and last states of the prefix by First(π(n)) = s0 and

Last(π(n)) = sn. For a play π, we naturally extend the notation to First(π). The

set of plays of G is denoted by Plays(G) and the corresponding set of prefixes is

denoted by Prefs(G). Given a play π ∈ Plays(G), we denote by Inf(π) ⊆ S the

set of states that are visited infinitely often along the play. The infinite suffix of

a play starting in sn is denoted π(n,∞).

Definition 2.3 (Value of play). Given a function f : Plays(G)→ R∪{−∞, ∞},
the value of a play π is denoted by f(π).

For the moment, we focus on graphs with one-dimension weights and one-

dimension value functions. In Part II, we lift this restriction and consider vectors

of weights and multi-dimension value functions.

Remark 2.4. We use the term value to characterize payoffs associated to plays,

by analogy with the expected value in a stochastic setting, which we discuss in

the following. In particular, this is not to be confused with the minimax value

of a game [vN28, OR94]. This classical game-theoretic concept represents the

rational outcome of a game when both players play optimally. In this work, it

corresponds to the optimal worst-case value. C

2.1.2 Two-Player Games

In this thesis, we focus on two-player turn-based games. We denote the two

players by P1 and P2.

Definition 2.5 (Game). A finite game is a tuple G = (G, S1, S2) composed of

(i) a finite weighted graph G = (S,E,w); and (ii) a partition of its states S into

S1 and S2 that resp. denote the sets of states belonging to P1 and P2.
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s1 s2 s3 s4 −1

1 2

−1 2

−1

Figure 2.1: Simple two-player game over a weighted graph.

When explicit reference to the underlying graph is not necessary, we simply

denote the game by G = (S1, S2, E, w). A game is one-player if S2 = ∅.
Example 2.6. A simple two-player game is presented in Fig. 2.1. States of P1

are depicted by circle vertices, states of P2 by square vertices. The initial state

is indicated by the small arrow pointing to s2. Edges are labeled with integer

weights. C

A prefix π(n) of a play π belongs to Pi, i ∈ {1, 2}, if Last(π(n)) ∈ Si. The

set of prefixes that belong to Pi is denoted by Prefsi(G). We denote by |G| the

size of a game, defined as a polynomial function of |S|, |E| and V = dlog2W e.
Remark 2.7. Recent research effort has been put into extending the two-player

turn-based setting in two directions. First, multi-player non-zero-sum games

have been studied in order to model complex systems composed of multiple

components, with objectives that are not necessarily antagonistic (see for exam-

ple De Pril’s thesis [De 13]). An important part of the effort resides in defining

meaningful solution concepts. For example, the seminal notion of Nash equilib-

rium [Nas50] has been refined in several ways (subgame perfect equilibria, secure

equilibria, etc) [CHJ04,GU08,BMR14]. Second, games where players choose ac-

tions concurrently have been studied for a variety of winning objectives. See for

example [dAHK98,Cha07a,BBMU12,KLST12].

Throughout this thesis, we focus on extending the power and expressiveness

of the quantitative framework for the two-player turn-based case. Adapting

our results to concurrent and/or multi-player games is an interesting long-term

perspective. C

2.1.3 Strategies

Probability distributions. Given a finite set A, a (rational) probability dis-

tribution on A is a function d : A → [0, 1] ∩ Q such that
∑

a∈A d(a) = 1. We
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denote the set of probability distributions on A by D(A). The support of the

probability distribution d on A is Supp(d) = {a ∈ A | d(a) > 0}.
Strategies. When the pebble is on a state belonging to Pi, this player chooses

how to move it on the graph according to his strategy.

Definition 2.8 (Strategy). Let G = (S1, S2, E, w) be a two-player game, a

strategy for Pi, i ∈ {1, 2}, is a function λi : Prefsi(G) → D(S) such that for all

ρ ∈ Prefsi(G), we have Supp(λi(ρ)) ⊆ Succ(Last(ρ)).

A strategy is called pure if it is deterministic, i.e., if its support is a singleton

for all prefixes. Otherwise it is said to be randomized . When a strategy λi of

Pi is pure, we sometimes simplify its notation and write λi(ρ) = s instead of

λi(ρ)(s) = 1, for any ρ ∈ Prefsi(G) and the unique state s ∈ Supp(λi(ρ)).

A strategy λi for Pi has finite memory if it can be encoded by a finite state

machine with stochastic outputs, called stochastic output Moore machine.

Definition 2.9 (Stochastic output Moore machine). A stochastic output

Moore machine (SOMM) is a tuple M(λi) = (Mem,m0, αu, αn), where (i) Mem

is a finite set of memory elements, (ii) m0 ∈ Mem is the initial memory element,

(iii) αu : Mem×S → Mem is the update function, and (iv) αn : Mem×Si → D(S)

is the next-action function.

If the game is in s ∈ Si and m ∈ Mem is the current memory element, then

the strategy chooses s′, the next state of the game, according to the probability

distribution αn(m, s). When the game leaves a state s ∈ S, the memory is

updated to αu(m, s). Formally, (Mem,m0, αu, αn) defines the strategy λi such

that λi(ρ ·s) = αn(α̂u(m0, ρ), s) for all ρ ∈ Prefs(G) and s ∈ Si, where α̂u extends

αu to sequences of states starting from m0 as expected.

Note that pure finite-memory strategies have deterministic next-action func-

tions. A strategy is memoryless if |Mem| = 1, i.e., it does not depend on the

history but only on the current state of the game.

Example 2.10. To illustrate those notions, consider the game in Fig. 2.2. It

is one-player and unweighted. Observe that sb is the only state where P1 has

an actual choice. We intuitively define strategy λ1 for P1 as follows. If the

last visited state was sa, then choose sa with probability 1/3 and state sc with

probability 2/3. If the last visited state was sc, then choose sa or sc with equal
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sa sb sc

Figure 2.2: Simple one-player game over an unweighted graph.

probability. The first time you play, choose as if sa was visited. This strategy is

both finite-memory and randomized.

We encode λ1 as a SOMM M(λ1) = (Mem,m0, αu, αn). The two memory

elements of Mem = {ma,mc} respectively represent that the last visited state

between {sa, sc} was sa or sc. The initial memory element is m0 = ma. The

update and next-action functions are defined as follows:

αu :=



(ma, sa) 7→ ma

(ma, sb) 7→ ma

(ma, sc) 7→ mc

(mc, sa) 7→ ma

(mc, sb) 7→ mc

(mc, sc) 7→ mc

, αn :=



(ma, sa) 7→ sb

(ma, sb) 7→ {(sa, 1/3), (sc, 2/3)}

(ma, sc) 7→ sb

(mc, sa) 7→ sb

(mc, sb) 7→ {(sa, 1/2), (sc, 1/2)}

(mc, sc) 7→ sb

.

This SOMM is represented in Fig. 2.3. Edges of the machine are labeled following

the format input/output. C

ma mc
sc/sb,

sb/ {(sa, 1/2), (sc, 1/2)}
sa/sb,

sb/ {(sa, 1/3), (sc, 2/3)}

sc/sb

sa/sb

Figure 2.3: Stochastic output Moore machine for the strategy of Ex. 2.10.

We denote by Λi(G),ΛFi (G),ΛPFi (G),ΛMi (G),ΛPMi (G) and ΛRMi (G) the sets

of general (i.e., possibly randomized and infinite-memory), finite-memory, pure

finite-memory, memoryless, pure memoryless and randomized memoryless strate-

gies for player Pi on the game G. We do not write G in this notation when the

context is clear. A play π is said to be consistent with a strategy λi ∈ Λi if for
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all n ≥ 0 such that Last(π(n)) ∈ Si, we have Last(π(n+ 1)) ∈ Supp(λi(π(n)).

Remark 2.11. We use the classical model of strategies with deterministic memory

updates and a possibly stochastic next-action function. This definition is widely

used in the literature on games for verification and synthesis.

Some recent publications have explored the use of stochastic memory up-

dates, with interesting results [BBC+11,CFK+12,BBC+13,CFK+13a]. From an

implementation viewpoint, it is however necessary to consider representations

of the involved probability distributions when comparing the memory usage of

strategies. Note that this is also true for the next-action functions in both models

of strategies.

On a related note, the reader familiar with traditional game theory may

notice that our strategies, as described in Def. 2.8, correspond to behavioral

strategies. That is, we put the randomization on the choice of actions. This is in

contrast to mixed strategies, which put the randomization over pure strategies.

Intuitively, behavioral strategies throw a dice whenever an action must be chosen

whereas mixed strategies throw a dice once before starting the game to choose

a pure strategy. A third notion, general strategies, combines both possibilities.

In a setting of perfect recall (perfect information about the past, which is the

case in this thesis), the well-known Kuhn’s theorem states that all three variants

have the same power [Aum64]. In other words, if a player can win with any of

those strategy types, he can also win when restricted to any of the other two.

Nevertheless, the choice of the model may still impact the complexity of the

strategies needed to win. In particular, Cristau, David and Horn have shown

some intruiguing examples where the memory needs vary greatly depending on

this choice [CDH10b]. C

2.1.4 Markov Decision Processes

Definition 2.12 (Markov decision process). A finite Markov decision pro-

cess (MDP) is a tuple P = (G, S1, S∆,∆) where (i) G = (S,E,w) is a finite

weighted graph, (ii) S1 and S∆ define a partition of the set of states S into

states of P1 and stochastic states, and (iii) ∆: S∆ → D(S) is the transition

function that, given a stochastic state s ∈ S∆, defines the probability distri-

bution ∆(s) over the possible successors of s, such that for all states s ∈ S∆,

Supp(∆(s)) ⊆ Succ(s).
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As for games, when explicit reference to the underlying graph is not necessary,

we simply denote the MDP by P = (S1, S∆, E,∆, w).

An MDP can be seen as a two-player game where P1 is playing against a

stochastic adversary using a fixed randomized memoryless strategy ∆ in states

of the set S∆. Hence MDPs are sometimes referred to as 11
2 -player games in the

literature. Notions of prefixes and strategies are naturally extended to MDPs.

2.1.5 Markov Chains

Definition 2.13 (Markov chain). A finite Markov chain (MC) is a tuple

M = (G, δ) where (i) G = (S,E,w) is a finite weighted graph; and (ii) δ : S →
D(S) is the transition function that, given a state s ∈ S, defines the probability

distribution δ(s) over the possible successors of s, such that for all states s ∈ S,

Supp(δ(s)) ⊆ Succ(s).

As usual, when explicit reference to the underlying graph is not necessary,

we simply denote the MC by M = (S,E, δ, w).

An MC can be seen as an MDP where the strategy of P1 is also fixed, or as

a game where both strategies are fixed.

Probability measure and expected value. In a Markov chain M = (G, δ),
an event refers to a measurable set of plays A ⊆ Plays(G). Every event has a

uniquely defined probability [Var85] (Carathéodory’s extension theorem induces

a unique probability measure on the Borel σ-algebra over Plays(G)). We denote

by PMsinit(A) the probability that a play belongs to A when the Markov chain M

starts in sinit ∈ S and is executed for an infinite number of steps.

Given a measurable value function f : Plays(G)→ R ∪ {−∞, ∞}, we denote

by EMsinit(f) the expected value or expectation of f over a play starting in sinit. The

σ-algebra is defined through cylinder sets of prefixes: each prefix ρ defines a set

of plays π such that ρ is a prefix of π [BK08]. Hence, the notions of probability

and expected value can naturally be used over prefixes by considering the plays

belonging to their cylinder set.

Example 2.14. Consider the Markov chain M depicted in Fig. 2.4. We use

diamond vertices to represent stochastic states, and annotate outgoing edges

with probabilities according to the transition function. Let event A be the set of

plays that visit s1 at least three times. It is easy to see that PMs1 (A) = 1
2 ·

1
2 = 1

4



2.1 – Games, Markov Decision Processes and Markov Chains 23

s1 s2

1
2

1
2 −1

0−1

Figure 2.4: Simple Markov chain. Unlabeled edges have probability one.

(the first visit is granted by the initial edge). Now consider event A′, defined

as the set of plays that visit s1 infinitely often. This event has probability zero:

PMs1 (A′) = limn→∞
(

1
2

)n
= 0. C

2.1.6 Outcomes

Projections. Given a set Ai, 1 ≤ i ≤ k of a cartesian product A1 × . . . × Ak,
we define the projection over Ai, denoted by projAi : A1 × . . . ×Ak → Ai, as the

mapping from elements a = (a1, . . . , ak) to projAi(a) = ai.

Outcomes in MCs. Let M = (G, δ) be a Markov chain, with G = (S,E,w) its

underlying graph. Given an initial state sinit ∈ S, we define the set of its possible

outcomes as

OutsM (sinit) =
{
π = s0s1s2 . . . ∈ Plays(G) | s0 = sinit ∧

∀n ∈ N, sn+1 ∈ Supp(δ(sn))
}
.

Note that if δ is deterministic (i.e., if the support is a singleton) in all states, we

obtain a unique play π = s0s1s2 . . . as the unique possible outcome.

Outcomes in games. Let G = (G, S1, S2) be a two-player game, with G =

(S,E,w) its underlying graph. Given two strategies, λ1 ∈ Λ1 and λ2 ∈ Λ2, and

an initial state sinit ∈ S, we extend the notion of outcomes as follows:

OutsG(sinit, λ1, λ2) =
{
π = s0s1s2 . . . ∈ Plays(G) | s0 = sinit ∧

π is consistent with λ1 and λ2

}
.

Observe that when fixing the strategies, we obtain an MC denoted by G[λ1, λ2].

This MC is finite if both λ1 and λ2 are finite-memory strategies. Let M(λ1) =

(Mem1,m1, α
1
u, α

1
n) andM(λ2) = (Mem2,m2, α

2
u, α

2
n) be the SOMMs of two such

strategies. The set of states of the resulting MC is obtained through the product
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of the memory elements of the strategies given as SOMMs and the states of the

game, i.e., S × Mem1 × Mem2. Its transition function is defined based on the

distributions prescribed by the strategies and in order to accurately account for

the memory updates.

Notice that the outcomes of G and G[λ1, λ2] are different objects by nature:

the former are plays on a graph defined by the set of states S while the latter

are plays on a graph defined by S×Mem1×Mem2. Still, there exists a bijection

between outcomes of the MC and their traces in the initial game, thanks to the

projection operator (Lemma 2.16).

Example 2.15. Let G be the game depicted in Fig. 2.2. This game is actually an

MDP (with no stochastic state) since the set of states of P2 is empty. Let λ1 be

the randomized finite-memory strategy presented in Ex. 2.10. The corresponding

SOMM M(λ1) is illustrated in Fig. 2.3.

(ma, sa) (ma, sb) (ma, sc)

(mc, sa) (mc, sb) (mc, sc)
1
2

1
2

1
3

2
3

Figure 2.5: Markov chain obtained by product of the one-player game of Fig. 2.2
and the SOMM of Fig. 2.3.

Applying strategy λ1 on G induces a Markov chain, obtained via the product

of G andM(λ1). This MC is depicted in Fig. 2.5. While the graph is now based

on the state space Mem× S, it is easy to reason on traces in the original graph

by projecting plays over the set S. C

Lemma 2.16 ([BFRR13, Lemma 1]). Let G = (G, S1, S2) be a game, with

G = (S,E,w) its underlying graph. Let λ1 ∈ ΛF1 and λ2 ∈ ΛF2 be the finite-

memory strategies of the players. Then there is a bijection between outcomes in

G and outcomes in the resulting Markov chain G[λ1, λ2].
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Proof. Let sinit ∈ S be the initial state of the game,M(λ1) = (Mem1,m1, α
1
u, α

1
n)

and M(λ2) = (Mem2,m2, α
2
u, α

2
n) be the SOMMs.

An outcome in G[λ1, λ2] is a sequence of states from S ×Mem1 ×Mem2. Its

projection on the set S is unique and defines the outcome in the sense of G.

Conversely, consider an outcome in G: it is of the form s0s1s2 . . . ∈ Sω,

with s0 = sinit. We claim there is a unique corresponding outcome in G[λ1, λ2],

written (s0,m
0
1,m

0
2)(s1,m

1
1,m

1
2) . . . ∈ S × Mem1 × Mem2, with (s0,m

0
1,m

0
2) =

(sinit,m1,m2). Indeed, it suffices to see that the update functions of the SOMMs,

α1
u and α2

u, are deterministic functions. Hence, it is easy to reconstruct the

outcome of G[λ1, λ2] based on its projection on S as it suffices to apply the effect

of the update functions on the memory at each step.

Hence, we obtain the following equality:

OutsG(sinit, λ1, λ2) = projS
(
OutsG[λ1,λ2]((sinit,m1,m2))

)
.

Based on this, and for the sake of readability, we abuse the notation and write

OutsG[λ1,λ2](sinit) equivalently to refer to this set of outcomes. Similar abuse is

taken for value functions and initial states.

Back to the outcomes of the game: note that if both strategies λ1 and λ2 are

pure, the resulting Markov chain only involves Dirac distributions (δ is determin-

istic) and the set OutsG(sinit, λ1, λ2) is composed of a unique play π = s0s1s2 . . .

such that for all n ≥ 0, i ∈ {1, 2}, if sn ∈ Si, then we have λi(sn) = sn+1.

Outcomes in MDPs. Let P = (G, S1, S∆,∆) be a Markov decision process,

with G = (S,E,w) its underlying graph. Again, we can fix the strategy λ1 of P1

and obtain the Markov chain P [λ1]. Let M(λ1) = (Mem,m0, αu, αn), assuming

the strategy is finite-memory. The set of outcomes starting in sinit ∈ S is defined

as OutsP (sinit, λ1) = projS
(
OutsP [λ1]((sinit,m0))

)
. Again, we abuse the notation

and write OutsP [λ1](sinit) equivalently.

Finally, back to the two-player game G, if we fix the strategy λi of only

one player Pi, i ∈ {1, 2}, we obtain not a Markov chain, but a Markov decision

process for the remaining player P3−i. This MDP is denoted by G[λi]. We define
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its set of outcomes as

OutsG(sinit, λi) =
⋃

λ3−i ∈Λ3−i

OutsG[λi](sinit, λ3−i) =
⋃

λ3−i ∈Λ3−i

OutsG[λ1,λ2](sinit).

2.1.7 Attractors and Submodels

Attractors. Given a game G = (S1, S2, E, w), the attractor for P1 of a set

A ⊆ S in G is denoted by AttrP1
G (A) and computed as the fixed point of the

sequence

AttrP1, n+1
G (A) = AttrP1, n

G (A)

∪ {s ∈ S1 | ∃ (s, t) ∈ E, t ∈ AttrP1, n
G (A)}

∪ {s ∈ S2 | ∀ (s, t) ∈ E, t ∈ AttrP1, n
G (A)},

with AttrP1, 0
G (A) = A. The attractor AttrP1

G (A) is exactly the set of states from

which P1 can ensure to reach A no matter what P2 does. That is,

AttrP1
G (A) =

{
s ∈ S | ∃λ1 ∈ Λ1(G), ∀λ2 ∈ Λ2(G),

∀π = s0s1s2 . . . ∈ OutsG(s, λ1, λ2), s0 = s, ∃ i ∈ N, si ∈ A
}

The attractor AttrP2
G (A) for P2 is defined symmetrically.

Subgraphs, subgames and sub-MDPs. Given a graph G = (S,E,w) and a

subset of states A ⊆ S, we define the induced subgraph naturally. We denote it

by G � A = (A,E∩(A×A), w). Subgames and sub-MDPs are defined similarly by

considering their induced subgraphs. It is to note that subgames and sub-MDPs

can only be properly defined if the induced subgraphs contain no deadlock and

if the transition functions remain well-defined in the case of MDPs (i.e., if the

probabilities on outgoing edges still sum up to one in all stochastic states of the

sub-MDP).

2.2 Objectives and Decision Problems

We present the following notions with regard to games w.l.o.g. as MDPs can be

seen as games where P2 has fixed his strategy.
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Winning objectives. Let G be a game. A winning objective for Pi in G is a

predefined set of plays φi ⊆ Plays(G). A play π ∈ Plays(G) is considered winning

for Pi if π ∈ φi. We present several classical objectives in Section 2.3.

Our work is focused on zero-sum games. That is, φ1 ∪ φ2 = Plays(G) and

φ1∩φ2 = ∅. In practice, a play is winning for P1 if and only if it is losing for P2.

In the following, we thus take the point of view of P1, and state the objectives

accordingly. We are interested in strategies of P1 that induce winning plays.

2.2.1 Qualitative Objectives

Qualitative objectives express Boolean properties on plays such as reachability,

liveness, etc. A play either satisfies the property (it is winning) or it does not (it

is losing). We consider two semantics: the surely winning and the almost-surely

winning semantics.

Definition 2.17 (Surely winning). Given an initial state sinit ∈ S, a strategy

λ1 ∈ Λ1 for P1 is surely winning for an objective φ in G if for all plays π ∈
Plays(G) that are consistent with λ1 from sinit, we have π ∈ φ.

In other words, a surely winning strategy ensures winning plays against any

strategy of P2. That is, λ1 is surely winning from sinit if OutsG(sinit, λ1) ⊆ φ.

When in an MDP, or when at least one of the players plays a randomized

strategy, the notion of sure winning may be too restrictive and inadequate, as

the set of consistent plays that do not belong to φ may have zero probability

measure. Therefore, it is useful to reason about the satisfaction probability .

Definition 2.18 (Almost-surely winning). Let λ1 ∈ Λ1 and sinit ∈ S. Given

a threshold α ∈ [0, 1] and a measurable objective φ ⊆ Plays(G), α-satisfaction

asks that for all λ2 ∈ Λ2, we have PG[λ1,λ2]
sinit (φ) ≥ α. If λ1 satisfies φ with

probability α = 1, we say that λ1 is almost-surely winning for φ in G.

Both for surely and almost-surely winning semantics, the associated decision

problems ask to decide, given a game, an objective and an initial state, if P1 has

a corresponding winning strategy.
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2.2.2 Quantitative Objectives

Given a value function f and a rational threshold v ∈ Q, we naturally define a

corresponding winning objective φf,∼(v) = {π ∈ Plays(G) | f(π) ∼ v}, for any ∼
in {>,≥,=, <,≤}. Note that we restrict to rational thresholds due to computa-

tional problems arising with irrational ones.

As for qualitative objectives, surely winning and almost-surely winning se-

mantics can be used for quantitative objectives. A third semantics is also of

particular interest in the case of MDPs:1 the expected value or expectation se-

mantics.

In the quantitative context, it is common to present the surely winning and

expected value semantics through their associated decision problems, namely the

worst-case threshold problem and the expected value threshold problem.

Definition 2.19 (Worst-case threshold problem). Given a two-player game

G = (S1, S2, E, w), an initial state sinit ∈ S, a value function f : Plays(G) →
R∪{−∞, ∞}, and a rational threshold µ ∈ Q, the worst-case threshold problem

asks to decide if P1 has a strategy λ1 ∈ Λ1 such that

∀λ2 ∈ Λ2, ∀π ∈ OutsG(sinit, λ1, λ2), f(π) ≥ µ.

Definition 2.20 (Expected value threshold problem). Given an MDP

P = (S1, S∆, E,∆, w), an initial state sinit ∈ S, a measurable value function

f : Plays(P )→ R∪{−∞, ∞}, and a rational threshold ν ∈ Q, the expected value

threshold problem asks to decide if P1 has a strategy λ1 ∈ Λ1 such that

EP [λ1]
sinit

(f) ≥ ν.

Remark 2.21. It is to note that there exist other interesting decision problems,

and some specific to particular value functions. Our presentation here is not

exhaustive: it focuses on the most commonly studied problems, and those useful

to understand our contributions. C

1Or games played over a stochastic arena. See for example [CMH08,CDH09,CFK+13b].
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2.2.3 Synthesis Problem

Synthesis. In the previously defined decision problems, the question is to decide

whether P1 has a winning strategy (with respect to the appropriate winning

semantics). For all the studied models, we are also interested in constructing

such winning strategies if they exist. This is known as the synthesis problem.

Our ultimate goal is to provide efficiently implementable controllers. Hence,

we favor strategies that are considered simple to implement and/or using a min-

imal amount of resources. Formally, we notably study the memory requirements

of winning strategies, both for P1 and P2. For example, we will see that for

most classical objectives, memoryless strategies are sufficient. That is, if Pi has

a winning strategy, then he has one which is memoryless.

Finite memory. When considering more complex objectives (see Parts II, III

and IV), strategies with infinite memory may be required in general. In that case,

it is of interest to restrict P1 to finite-memory strategies, as they correspond to

strategies that can be implemented in practice.

2.2.4 Determinacy and Optimality

Determinacy. Given an initial state sinit ∈ S, we are looking for a winning

strategy for P1, or a winning strategy for P2 (i.e., a strategy that ensures a

losing play for P1). In full generality, there may exist states where none of the

players have a winning strategy: neither can P1 ensure a winning play nor can

P2 ensure a losing one. In other words, P2 may have a counter-strategy for each

strategy of P1, but no unique strategy that counters all strategies of P1.

Given some objective for Pi, we say that a state is a winning state for Pi if Pi
has a winning strategy from this state. Games where all states are either winning

for P1 or winning for P2 are called determined. Determinacy is an important

concept: most interesting questions only apply on games that are determined.

Classes of determined games are well-studied. Fortunately, very general re-

sults by Martin guarantee determinacy for our game models with Borel objec-

tives [Mar75, Mar98]. The objectives studied in this thesis are Borel, hence

Martin’s theorems apply and guarantee determinacy.

Optimal and ε-optimal strategies. Consider a game G, a value function

f : Plays(G) → R ∪ {−∞, ∞} and a threshold problem (worst-case or expected
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value). We assume w.l.o.g. that P1 aims at maximizing the value of plays. We

classicaly define the optimal value of a threshold problem as the supλ1∈Λ1
infλ2∈Λ2

over thresholds that can be ensured.

For example, given a game G with a one-dimension quantitative objective

φf,≥(v) and an initial state sinit ∈ S, we define its worst-case optimal value as

val(φf,≥) = sup
λ1∈Λ1

inf
λ2∈Λ2

{
v | OutsG(sinit, λ1, λ2) ⊆ φf,≥(v)

}
.

A strategy for P1 (resp. P2) is then said to be optimal for this problem if it

ensures a threshold higher (resp. lower) than or equal to the threshold ensured

by any other strategy of the same player. That is, if it ensures the optimal value.

Remark 2.22. The above definition of value is the lower value (value for P1). In

full generality, the upper value (value for P2), defined by swapping the sup and

inf, may be different. However, it is well-known that the lower and upper values

are equal in games that are determined, as defined in Sect. 2.2.4. Since we only

consider determined games, we do not distinguish them. C

For complex winning objectives, optimal strategies may not exist in general

(the supremum need not be a maximum) or have prohibitive memory require-

ments (infinite memory). See for example [CHJ05,CD11,BMOU11] or the mean-

payoff Büchi game that is depicted in Fig. 7.4. In that case, it is useful to look

for ε-optimal strategies: strategies achieving a value val(φf,≥)− ε for some given

ε > 0. Observe that for all ε > 0, ε-optimal strategies (i.e., that achieve value

(val(φf,≥)− ε)) always exist in all determined games. It is a consequence of the

existence of a game optimal value, equal to both the upper and lower values, as

sketched in Remark 2.22.

2.3 Some Classical Objectives

We present some classical objectives and important results that we use through

this thesis. We are particularly interested in the complexity of decision problems

and winning strategies. For quantitative objectives, we only discuss games with

one-dimension weights, as we will extend this setting to multi-dimension weights

in Part II.
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2.3.1 Qualitative Objectives

We mention three important qualitative objectives: reachability, Büchi and par-

ity. An overview of the corresponding results is presented in Table 2.1.

Reachability. Given a target set of states T ⊆ S, the reachability objective asks

for plays that reach T , an event denoted by ♦T according to the classical LTL

formulation [Pnu77]. That is,

ReachG(T ) = {π = s0s1s2 . . . ∈ Plays(G) | ∃ i ∈ N, si ∈ T} .

To win this objective, P1 must be able to force visiting a state of T at least once.

Example 2.23. Consider the game depicted in Fig. 2.1. Let T = {s3} be the

target set and sinit = s2 be the initial state. A sure winning strategy for P1 is to

take edge (s2, s3). Now assume the target set is T ′ = {s4}. In that case, P1 has

no sure winning strategy because P2 can always choose to take edge (s3, s2).

Now, consider the MC defined in Fig. 2.4. There is no choice for P1 but we

can still check if the target set T ′′ = {s2} is reached eventually. Clearly, it is not

reached surely: the play (s1)ω is a valid outcome and never reaches T ′′. Still,

the unique play that never reaches the target set has a zero probability. Hence,

the reachability objective is almost-surely satisfied. C

For games with the sure semantics, pure memoryless strategies suffice for

both players. The set of winning states for P1 can be computed in linear time:

it is simply the attractor AttrP1
G (T ). Deciding the winner in reachability games

is P-complete [Bee80, Imm81]. For MDPs with the almost-sure semantics, pure

memoryless strategies also suffice for the only player, P1. The decision problem

can also be solved in polynomial time [CJH03, BK08]. For exemple, Chatter-

jee and (M.) Henzinger present efficient dynamic graph algorithms operating in

O(|S|2/3 · |E|)-time in [CH11].

Büchi. Given a target set of states T ⊆ S, the Büchi objective asks for plays

that visit T infinitely often, an event denoted by �♦T in LTL. That is,

BuchiG(T ) = {π = s0s1s2 . . . ∈ Plays(G) | Inf(π) ∩ T 6= ∅} .

To win this objective, P1 must be able to force repeated visits of the set T .

The Büchi objective generalizes the reachability one by making it a repeated
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reachability Büchi parity

games

sure sem.

complexity P-complete UP ∩ coUP

P1 mem.
pure memoryless

P2 mem.

mdps

almost-sure sem.

complexity P-complete

P1 mem. pure memoryless

Table 2.1: Overview of some known results for qualitative objectives in games
(sure semantics) and MDPs (almost-sure semantics).

reachability objective. In particular, simple reachability can be encoded as a

Büchi objective by transforming the states of the target set T into absorbing

states (states with a single outgoing edge, which is a self-loop).

Example 2.24. Consider the game of Fig. 2.1. Let T = {s3} be the target set

and sinit = s2 be the initial state. While P1 can ensure reaching T once with a

simple attractor strategy, he cannot ensure repeated visits. Indeed, P2 can take

edge (s3, s4) to prevent further visits of s3. C

Both for games with sure semantics and MDPs with almost-sure seman-

tics, pure memoryless strategies are sufficient. The classical algorithm for Büchi

games has a time complexity of O(|S| · |E|) [EJ91, McN93, Zie98]. Hence de-

ciding the winner in Büchi games and MDPs is also P-complete. An algorithm

running in O(|S|2) has been recently introduced by Chatterjee and (M.) Hen-

zinger [CH12].

Parity. Let G be a game extended with a priority function p : S → N. The

parity of a play π is defined as Par(π) = min {p(s) | s ∈ Inf(π)}. The parity

objective requires that the minimum priority visited infinitely often be even.

ParityG = {π = s0s1s2 . . . ∈ Plays(G) | Par(π) mod 2 = 0} .

Parity is a canonical way to encode ω-regular objectives [Tho97]. In partic-

ular, when the set of priorities is restricted to {0, 1}, we have a Büchi objective.

Example 2.25. We consider the game depicted in Fig. 2.1 with a priority function

p : {s1 7→ 1, s2 7→ 1, s3 7→ 0, s4 7→ 2}. Then, P1 can surely win by repeatedly
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choosing edge (s2, s3). Indeed, either P2 never goes on the right, in which case

the minimal priority seen infinitely often will be 0, or he eventually chooses the

right edge. If he does so, the only state visited infinitely often is s4, and its

priority is even. Hence in both cases, consistent plays are winning for P1. C

Again, pure memoryless strategies suffice in both games and MDPs, with the

corresponding semantics. See [EJ88, Zie98] for games and [CY90, dA97, CJH04]

for MDPs.

While the previous objectives all admit polynomial decision algorithms both

in games and MDPs, the situation is different for parity. Almost-sure winning

can still be decided in polynomial time for MDPs [CY90, CJH04]. For games,

the problem is in NP ∩ coNP: pure memoryless optimal strategies exist for

both players and one-player variants are solvable in polynomial time [KKV01].

Nonetheless, whether parity games are in P is a long-standing open problem.

Parity games can be polynomially reduced to mean-payoff games, which also

belong to NP ∩ coNP, as discussed in the following. This reduction is notably

presented by Jurdziński in [Jur98], also showing that the complexity class can be

refined to UP∩ coUP (subclass of NP∩ coNP restricted to unambiguous Turing

machines [Pap94]). Note that parity games subsume modal µ-calculus model

checking [EJS93].

2.3.2 Quantitative Objectives

We present several well-known value functions and associated decision problems:

total-payoff, mean-payoff, shortest path and energy. An overview of the corre-

sponding results is presented in Table 2.2.

Total-payoff. The total-payoff of a prefix ρ = s0s1 . . . sn is defined by the value

function TP(ρ) =
∑i=n−1

i=0 w((si, si+1)). This is naturally extended to plays

by considering the limit behavior. Since the total-payoff need not converge in

general, we define two variants. The infimum (resp. supremum) total-payoff of a

play π is TP(π) = lim infn→∞ TP(π(n)) (resp. TP(π) = lim supn→∞ TP(π(n))).

The sets of winning plays for the worst-case semantics for the infimum and
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TP MP SP EG

games

worst-case

complexity UP ∩ coUP P-c. UP ∩ coUP

P1 mem.
pure memoryless

P2 mem.

mdps

expected value

complexity P-complete
n/a

P1 mem. pure memoryless

Table 2.2: Overview of some known results for quantitative objectives in games
(worst-case semantics) and MDPs (expected value semantics). TP stands for
total-payoff, MP for mean-payoff, SP for shortest path and EG for energy. In
the energy context, the decision problem is the unknown initial credit problem.

supremum total-payoffs with threshold µ ∈ Q are written as follows:

TotalInfG(µ) = {π ∈ Plays(G) | TP(π) ≥ µ} ,
TotalSupG(µ) =

{
π ∈ Plays(G) | TP(π) ≥ µ

}
.

The total-payoff objective models total accumulation (or consumption) of

resources along infinite plays. It can be seen as a refinement of mean-payoff

games for the particular case of optimal mean-payoff equal to zero.

Example 2.26. Consider Fig. 2.1. Assume P1 always chooses to go left. Then

the only consistent outcome is π = (s2s1)ω and the sequence of partial sums is

−1, 0,−1, 0 . . . We have that TP(π) = −1 and TP(π) = 0.

Let M be the MC described in Fig. 2.4. We are interested in computing the

expected (infimum) total-payoff. Observe that with probability 1/2 we reach the

zero-loop in one step, with 1/4 in two steps, and so on. Thus, we have that

EMsinit(TP) = −1 ·
∑∞

n=0

(
1
2

)n
= −2. C

One-dimension total-payoff value functions admit pure memoryless optimal

strategies, both in games for both players (worst-case semantics) and in MDPs

(expected value semantics) [FV97,GZ04]. In terms of complexity of the thresh-

old problems, the situation is similar to the parity objective. The worst-case

threshold problem for games is in UP ∩ coUP and no polynomial algorithm is

known [GS09]. The expected value threshold problem can be solved in polyno-

mial time through linear programming [FV97].
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Mean-payoff. The mean-payoff of a prefix ρ = s0s1 . . . sn is defined by the value

function MP(ρ) = 1
nTP(ρ). Again, this is extended to plays by considering the

limit behavior, and two variants coexist. For a play π, the infimum mean-payoff

is MP(π) = lim infn→∞MP(π(n)) and the supremum mean-payoff is MP(π) =

lim supn→∞MP(π(n)).

The sets of winning plays for the worst-case semantics for the infimum and

supremum mean-payoffs with threshold µ ∈ Q are written as follows:

MeanInfG(µ) = {π ∈ Plays(G) | MP(π) ≥ µ} ,
MeanSupG(µ) =

{
π ∈ Plays(G) | MP(π) ≥ µ

}
.

Observe that threshold µ can be taken equal to zero w.l.o.g. as we transform the

weight function w to b · w − a for any threshold a
b , a ∈ Z, b ∈ N0 = N \ {0}.

Mean-payoff is a classical game-theory objective, modeling the long-run aver-

age reward or cost that a player can obtain over an infinite play. It is a powerful

model: parity games (a fortiori modal µ-calculus model checking) can be reduced

to mean-payoff games [Jur98].

The mean-payoff objective is prefix-independent : for all ρ ∈ Prefs(G), π ∈
Plays(G), we have that MP(ρ·π) = MP(π) (resp. MP(ρ·π) = MP(π)). Intuitively,

its value only depends on the long-run behavior and not on finite prefixes.

Example 2.27. Consider the game of Fig. 2.1. Recall that always taking left yields

an infimum (resp. supremum) total-payoff of −1 (resp. 0). For the mean-payoff,

the same outcome has a value of 0 for both variants of the limit.

Let M be the MC in Fig. 2.4. Consider the expected mean-payoff. As already

discussed, the probability of eventually reaching state s2 is one. Since the mean-

payoff value of any play is finite (trivially bounded by −W and W , in this specific

case, by −1 and 0), plays that never reach s2 do not impact the expectation.

Moreover, as mean-payoff is prefix-independent, finite prefixes up to reaching s2

are also negligible. We conclude that EMs1 (MP) = EMs1 (MP) = 0. C

For the specific case of one-dimension games (worst-case semantics), pure

memoryless optimal strategies always exist for both players [LL69, EM79]. De-

ciding the winner is in UP ∩ coUP [KL93, ZP96, Jur98, GS09]. An interesting

consequence of the memoryless determinacy is that both variants coincide in

terms of decision problem: the limit exists for outcomes induced by pure finite-



36 Chapter 2 – Background

memory strategies. This equivalence is no longer true when moving to multi-

dimension games (see Chap. 4). Again, whether mean-payoff games are in P is

a long-standing open problem which stays open despite many efforts [GKK88,

Con93, ZP96, Pis99, LP07, BV07, BCD+11]. In MDPs with the expected value

semantics, P1 can achieve the optimal expectation with a pure memoryless strat-

egy [Put94,FV97,Gim07]. The corresponding threshold problem can be answered

in polynomial time via linear programming.

Shortest path. This quantitative setting is a generalization of the classical

shortest path problem over graphs (see for example [CGR96] for the graph

setting). We assume game graphs where all weights are strictly positive (i.e.,

w : E → N0): they represent costs that P1 wants to minimize. Given a target

set of states T ⊆ S, we define the truncated sum up to T as TST : Plays(G) →
N ∪ {∞}, TST (π = s0s1s2 . . . ) =

∑n−1
i=0 w((si, si+1)), with n the first index such

that sn ∈ T , and TST (π) =∞ if π never reaches any state in T . An example of

a shortest path application is presented in Ex. 11.1.

The set of winning plays for the worst-case semantics for the shortest path

objective with threshold µ ∈ N and target set T ⊆ S is written as follows:

ShortPathG(T, µ) = {π ∈ Plays(G) | TST (π) ≤ µ} .

Notice the inequality is reversed (lower is better).

As all weights are strictly positive, it is possible to reduce the truncated sum

to the total-payoff (i.e., for all π ∈ Plays(G), TST (π) = TP(π)) by making all

states of T absorbing with a self-loop of zero weight. That is, for all s ∈ T , we

have that Succ(s) = {s} and w((s, s)) = 0.

However, this problem is simpler than the total-payoff. Both for games and

MDPs, pure memoryless strategies suffice. Moreover, both threshold problems

can be solved in polynomial time. In games (worst-case semantics), winning

strategies of P1 should avoid all cycles (because they yield strictly positive costs).

Hence usage of attractors and comparison of the worst possible sum of costs with

the threshold suffices. In MDPs (expected value semantics), the shortest path

problem is solvable in polynomial time via linear programming [BT91,dA99].

Energy. The energy objective aims at modeling resource consumption and

possible exhaustion over an infinite play. The goal of P1 is thus to maintain
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the running sum of weights (i.e., the total-payoff over prefixes) above zero at all

times. To stress on the context of energy games, we introduce the energy level

of a sequence of states ρ = s0s1 . . . sn, which is simply is EL(ρ) = TP(ρ). This

alternative notation is used to easily distinguish between the two contexts (as

the associated objectives will differ) and improve readability.

The usual question for the energy objective is slightly different than for the

preceding ones. We are interested in the unknown initial credit problem. That

is: does there exist a finite initial credit v0 ∈ N and a strategy λ1 ∈ Λ1 of P1

such that OutsG(sinit, λ1) ⊆ EnergyG(v0), for

EnergyG(v0) = {π ∈ Plays(G) | ∀n ≥ 0 : v0 + EL(π(n)) ∈ N} .

This objective is essentially a safety objective over the running sum of weights.

Consequently, the sure semantics is the one of choice for the analysis of this

quantitative setting. A discussion of the inadequacy of almost-sure semantics

in this context is presented in Sect. 7.2. Note that expectation analysis is not

relevant as there is no value function to optimize.

In one-dimension games, pure memoryless strategies suffice for the energy

objective and the unknown initial credit problem is in NP ∩ coNP [CdAHS03].

Morever, it was proved by Bouyer et al. that energy games are log-space equiv-

alent to mean-payoff games [BFL+08]. Specifically, given a game G, P1 has a

strategy and a finite initial credit to win the energy objective if and only if he

has a strategy to ensure a non-negative mean-payoff.

Example 2.28. Let us consider the game in Fig. 2.1. The equivalence between

mean-payoff games and energy games can be observed. Indeed, notice that the

strategy consisting in always taking left has been shown to ensure a mean-payoff

of zero. Hence, this strategy permits to win the energy objective for some finite

initial credit, which in this case is 1 (to be able to consume one unit of energy

when taking the −1 edge for the first time).

We mentioned that almost-sure semantics is inadequate for energy objectives.

In particular, it is not more powerful than sure semantics. To illustrate this

fact, consider the MC in Fig. 2.4. Whatever the finite initial credit, the energy

objective cannot be ensured surely because of the play (s1)ω which requires an

infinite amount of resources. Now assume we relax the objective by considering
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the almost-sure semantics, as we know that this play (s1)ω has probability zero.

Despite that, for any initial credit v0 ∈ N, there is a set of plays (s1)v0+1(s1)∗(s2)ω

which has a strictly positive probability measure and such that all such plays are

losing for the energy objective. Intuitively, we see that finite witnesses of energy

exhaustion always exist if surely winning cannot be ensured. Such prefixes have

a non-zero probability and thus almost-surely winning is also hopeless. This

argument is presented formally in Sect. 7.2. C



CHAPTER 3
Contributions

Multi-Dimension Objectives � Window Objectives � Beyond Worst-Case Syn-

thesis

Within this chapter, we give a brief presentation of the questions addressed in

the thesis and we summarize our main contributions. It is intended to be an

entry point to our work.

Our aim is to provide the reader with an overview of our core results, through

concrete statements. Technical details, as well as additional results, are spread

over Parts II, III and IV.

39
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3.1 Multi-Dimension Objectives

In collaboration with Krishnendu Chatterjee (Institute of Science and Tech-

nology Austria) and Jean-François Raskin (Université Libre de Bruxelles, Bel-

gium) [CRR12a, CRR12b, CRR14], later also involving Laurent Doyen (LSV -

ENS Cachan, France) [CDRR13a, CDRR13b], we studied extension of classical

quantitative objectives to multi-dimension games. In such games, edges bear

vectors of weights and traditional objectives are naturally extended. Table 4.1

presents an overview of the situation for multi-dimension games compared to

one-dimension games.

The worst-case mean-payoff threshold problem and the unknown initial credit

problem for energy games are both coNP-complete in the multi-dimension set-

ting [CDHR10, VR11, VCD+12]. We review the situation for such games in

Sect. 4.2.1. Our first question considers the total-payoff objective, for which no

result was known.

Question 1. Given that mean-payoff and total-payoff games are closely related

in the one-dimension case (Lemma 4.7), and they both are in UP ∩ coUP, does

this relation extend to the multi-dimension case? In particular, do multi total-

payoff games belong to coNP?

B We prove that total-payoff games are undecidable in multi-dimension games

with at least five dimensions (Thm. 4.8), even when P1 is restricted to

finite-memory strategies (Sect. 4.3.2). Our proof uses a reduction from the

halting problem for two-counter machines [Min61].

For multi-dimension mean-payoff games, infinite-memory strategies are more

powerful than finite-memory ones, which is not the case for energy games. More-

over, both objectives are equivalent when restricted to finite-memory strate-

gies [CDHR10, VR11, VCD+12]. The finite-memory model is the one of choice

for controller synthesis (Sect. 2.2.3). Therefore, it is crucial to precisely charac-

terize the memory requirements. We studied this problem for multi-dimension

energy (and mean-payoff) in conjunction with parity.

Question 2. Can we bound the memory needed for winning strategies in multi-

energy parity games?

B For P1, we prove that single exponential memory is sufficient (Thm. 5.10).
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Our result is a significant improvement over the triple exponential up-

per bound that can be obtained naively from the results known in litera-

ture [BJK10]. Our approach relies on the notion of even-parity self-covering

trees representing winning strategies, and is in two steps. First, we bound

the depth of such trees by a refined analysis (Lemma 5.4). Second, we

transform them in directed acyclic graphs of single exponential width by

merging comparable nodes (Lemma 5.6).

B For P1, we also show that exponential memory is necessary even when all

weights belong to {−1, 0,+1} and with no parity condition (Lemma 5.9).

B For P2, pure memoryless strategies are sufficient (Lemma 5.1).

Deciding if a winning strategy exists is in coNP, but what we want is to

actually synthesize such a winning strategy.

Question 3. Can we obtain an efficient synthesis algorithm for multi-dimension

energy (or mean-payoff) parity games?

B We establish a synthesis algorithm that requires exponential time in the

worst-case (Thm. 6.8). Since exponential memory is required (and the

decision problem is coNP-complete), this worst case exponential bound

can be considered optimal.

B Our algorithm is symbolic in the sense that it uses a compact antichain rep-

resentation of sets of winning credits by their minimal elements [DDHR06].

It is also incremental: we search for winning credits within a small range,

and increment the range only when necessary. This ensures efficient im-

plementation in practice.

Finally, we answer the following question for several classes of games. Our

results are summarized in Table 7.1.

Question 4. Can we trade pure finite-memory strategies of P1 for conceptually

simpler randomized memoryless strategies, if we relax from sure semantics to

almost-sure semantics or expectation semantics?

B For energy objectives, the answer is always no. Randomization is not

helpful even with only one player, as energy objectives are similar in spirit

to safety objectives (Lemma 7.2).
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B For two-player multi-dimension mean-payoff games, the answer is no, even

without parity. The answer becomes yes for one-player games, even with

parity (Lemma 7.4).

B For two-player games with a single mean-payoff objective and a parity

objective, the answer is yes (Lemma 7.10).

3.2 Window Objectives

While studying the mean-payoff and total-payoff objectives, it became clear for us

that their applicability can prove to be challenging for at least two reasons. First,

there is the obvious question of tractabity. Both objectives face a long-standing

complexity barrier in one-dimension games as no polynomial-time algorithm is

known (Sect. 2.3.2). In multi-dimension games, we discussed that total-payoff is

out of the picture due to undecidability. Second, both objectives are not well-

suited for systems where some (discrete) notion of time is important. Indeed,

they characterize long-run behaviors over infinite plays whereas in many practical

problems, we wish to provide bounds on time frames in which an acceptable

behavior can be witnessed.

Through joint work with Krishnendu Chatterjee (Institute of Science and

Technology Austria), Laurent Doyen (LSV - ENS Cachan, France) and Jean-

François Raskin (Université Libre de Bruxelles, Belgium) [CDRR13a,CDRR13b],

we introduced novel quantitative objectives, named window objectives. They

partially answer the issues raised by classical mean-payoff and total-payoff.

Our window objectives strengthen classical total-payoff and mean-payoff with

timing guarantees. Instead of the (total- or mean-)payoff along the whole infinite

play, we consider payoffs over a local bounded window sliding along the play.

We study several variants (Sect. 8.2), the main ones being the bounded window

mean-payoff and fixed window mean-payoff objectives. In the fixed window

variant, the bound on the window size is given as a parameter. In the bounded

window variant, the question is whether there exists a finite bound such that the

corresponding fixed window objective is satisfied on the considered play.

The first natural question is whether those objectives are related to the clas-

sical ones, and how.
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Question 1. What is the relation between window objectives and classical mean-

payoff and total-payoff?

B We prove that the window mean-payoff is a conservative approximation of

the classical mean-payoff in the following sense (Lemma 8.3): if the (fixed

or bounded) window objective is won for threshold zero, then the mean-

payoff objective is also won for threshold zero; if the mean-payoff objective

is won for threshold strictly greater than zero, then the bounded window

objective is won for threshold zero.

B Similar results are obtained for the total-payoff with variants of the window

objective (also Lemma 8.3).

Based on that result, it seemed promising to investigate the complexity of

window objectives, as they could provide a more tractable alternative to their

classical counterparts. We started with the one-dimension setting (comparative

overview in Table 8.1).

Question 2. What are the complexities of decision problems for the different

variants in one-dimension games? What are the memory requirements?

B One-dimension fixed window games are solvable in time polynomial in the

size of the game and in the maximal window size (Thm. 9.6) via a recur-

sive algorithm. This implies that the problem is P-complete for polynomial

window sizes, in contrast to the long-standing UP ∩ coUP barrier for clas-

sical objectives. Memory is necessary for both players and linear memory

always suffice.

B For the bounded window, we prove that the problem is in NP ∩ coNP and

at least as hard as classical mean-payoff games (Thm. 9.16). Moreover, we

show that P1 can always use memoryless strategies whereas P2 may require

infinite memory in general. This is an interesting reversal of the situation

for classical quantitative objectives where P2 is usually memoryless, even

in multi-dimension games or conjunctions with parity (Table 2.2, Table 4.1

and Table 4.2).

Lastly, we extended our study of window objectives to multi-dimension games

(comparative overview in Table 8.2).
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Question 3. What are the complexities of decision problems for the different

variants in multi-dimension games? What are the memory requirements?

B For the fixed window, we give several complexity results (Thm. 10.9). For

arbitrary window sizes, we prove the problem to be EXPTIME-complete.

Membership follows from a reduction to exponentially larger co-Büchi

games (Lemma 10.2). Hardness is proved in two settings: arbitrary di-

mensions and weights in {−1, 0, 1} via a reduction from the member-

ship problem in alternating polynomial-space Turing machines [CKS81]

(Lemma 10.5), and only two dimensions with arbitrary weights by reduc-

tion from countdown games [JSL08] (Lemma 10.6). For polynomial win-

dows, we get PSPACE-hardness via generalized reachability games [FH10]

(Lemma 10.7). Finally, in both cases, exponential memory is both sufficient

and necessary (Lemma 10.8).

B Unfortunately, we establish a prohibitive lower bound for the complexity

of bounded window games: they are at least non-primitive recursive. We

prove it by reduction from the termination problem in reset nets [Sch02,

LNO+08] (Thm. 10.10). Decidability remains open.

3.3 Beyond Worst-Case Synthesis

Our last set of results is related to the new framework of beyond worst-case syn-

thesis (Def. 11.3). Given a two-player game, a value function and finite-memory

stochastic model for P2 (given as a stochastic output Moore machine), we es-

sentially look for strategies that combine satisfaction of a worst-case problem

in the two-player game and satisfaction of an expected value threshold prob-

lem in the MDP induced by the stochastic model. This model was introduced

and studied in collaboration with Véronique Bruyère (Université de Mons, Bel-

gium), Emmanuel Filiot and Jean-François Raskin (both from Université Libre

de Bruxelles, Belgium) [BFRR13,BFRR14a,BFRR14b].

This novel problem aims at mixing high expected performance with strict

worst-case guarantees, a specification that is not expressible in existing models

(Sect. 11.1.1). We focused on synthesizing finite-memory strategies and we only

studied one-dimension games. We first studied the problem for the mean-payoff

(comparative overview in Table 11.1).
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Question 1. What is the complexity of the beyond worst-case mean-payoff prob-

lem? What are the memory requirements?

B We establish an algorithm that implies NP ∩ coNP-membership. It is based

on refined analysis of end-components and combination of simple strategies

into more complex combined strategies (Thm. 12.1). Our algorithm is opti-

mal with regard to the complexity of the worst-case mean-payoff threshold

problem which is already not known to be in P. Hence we interestingly

maintain the same tractability level while increasing the expressive power.

B Memory of pseudo-polynomial size (polynomial in the size of the game and

in the values of weights and thresholds) is sufficient and in general neces-

sary for finite-memory strategies of P1 (Thm. 12.35). For P2, memoryless

strategies suffice as the objective is essentially a disjunction of the worst-

case and expected value threshold problems (for which memoryless optimal

strategies exist as discussed in Sect. 2.3.2).

B Infinite-memory strategies are strictly more powerful than finite-memory

ones for P1. However they are less useful for synthesis and their analysis

requires different techniques (Sect. 12.7).

We also studied the beyond worst-case problem for the shortest path (com-

parative overview in Table 11.2).

Question 2. What is the complexity of the beyond worst-case shortest path

problem? What are the memory requirements?

B We establish a pseudo-polynomial-time algorithm based on a sequential

approach, first taking care of the worst-case, then of the expected value

(Thm. 13.3). Such an approach is conceptually simpler than in the mean-

payoff case but cannot be transposed for the mean-payoff (Rem. 13.1).

B In contrast to the mean-payoff case, our beyond worst-case algorithm shows

a complexity leap with regard to the individual worst-case and expected

value threshold problems which are in P for the shortest path. It cannot

be avoided unless P = NP as the problem is NP-hard (Thm. 13.6). We use

a reduction from the Kth largest subset problem to prove it [JK78,GJ79].

B Whereas infinite memory is useful in the beyond worst-case mean-payoff

setting, we show that for the shortest path, pseudo-polynomial memory is
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always sufficient for P1. It is also necessary in general (Thm. 13.4). For P2,

memoryless strategies again suffice as it is the case in the corresponding

worst-case and expected value threshold problems (Sect. 2.3.2).
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Introduction � Pure Strategies � Pure Finite-Memory Strategies

We open Part II with motivation regarding the analysis of games with multi-

dimension objectives. This framework, as well as conjunction of quantitative

and qualitative objectives, has many applications in verification and synthesis.

We then focus on decision problems in multi-dimension mean-payoff or en-

ergy games, based on recent results by Velner et al. [VCD+12] showing coNP-

completeness. We prove that albeit closely related to mean-payoff objectives

in one-dimension games, total-payoff objectives become undecidable in multi-

dimension games. This result was published in [CDRR13a,CDRR13b].

Multi-dimension mean-payoff requires infinite memory for the first player.

We are interested in synthesizing finite-memory controllers. Hence we restrict

the first player to finite-memory strategies and present corresponding results.

Finally, we discuss one-dimension mean-payoff or energy combined with par-

ity [CHJ05, BMOU11, CD12]. We advocate conjunction of parity and multi-

dimension objectives, for which we present first results in the following chapters.

49
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4.1 Introduction

Multi-dimension objectives. In applications of verification and synthesis,

quantitative objectives that typically arise are (i) multi-dimension quantitative

objectives (i.e., conjunction of several quantitative objectives), e.g., to express

properties like the average response time between a grant and a request is below

a given threshold µ1, and the average number of unnecessary grants is below

threshold µ2; and (ii) conjunction of quantitative objectives with a Boolean

objective, such as a mean-payoff parity objective that can express properties like

the average response time is below a threshold along with satisfying a liveness

property.

In summary, the quantitative objectives can express properties related to

resource requirements, performance, and robustness; multiple objectives can

express the different, potentially dependent or conflicting objectives; and the

Boolean objective specifies functional properties such as liveness or fairness.

The framework of multi-dimension quantitative games and games with con-

junction of quantitative and Boolean objectives has recently been shown to have

many applications in verification and synthesis, such as synthesizing systems

with quality guarantee [BCHJ09], synthesizing robust systems [BGHJ09], per-

formance aware synthesis of concurrent data structure [CCH+11], analyzing

permissivity in games and synthesis [BMOU11], simulation between quantita-

tive automata [CDH10a], generalizing Boolean simulation to quantitative sim-

ulation distance [CHR12], etc. Moreover, multi-dimension energy games are

equivalent to a decidable class of games on vector addition systems with states

(VASS). This model is equivalent to games over multi-counter systems and Petri

nets [BJK10]. Various decision problems over multi-dimension energy games

were studied in [FJLS11].

There are many recent works on the theoretical analysis of multi-dimen-

sion quantitative games, such as, mean-payoff parity games [CHJ05, BMOU11],

energy-parity games [CD12], multi-dimension energy games [CDHR10,VCD+12],

and multi-dimension mean-payoff games [CDHR10,VR11,VCD+12].

Synthesis. Most of these works focus on establishing the computational com-

plexity of the problem of deciding if player 1 has a winning strategy. From the

perspective of synthesis and other related problems in verification, the most im-
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EG MP MP TP TP

one-dim.

complexity NP ∩ coNP

P1 mem.
pure memoryless

P2 mem.

k-dim.

complexity coNP-c. NP ∩ coNP undec.

P1 mem. pure finite pure infinite
-

P2 mem. pure memoryless

Table 4.1: Overview of results for multi-dimension quantitative objectives. New
results are in bold.

portant problem is to obtain a witness finite-memory winning strategy (if one

exists), as discussed in Sect. 2.2.3. The winning strategy in the game corresponds

to the desired controller for (or implementation of) the system in synthesis, and

for implementability a finite-memory strategy is essential.

Our contributions. Within Part II, we consider the problem of finite-memory

strategy synthesis in multi-dimension quantitative games in conjunction with

parity objectives, and the problem of existence of memory-efficient randomized

strategies for such games.

This chapter discusses complexity of decision problems in games with multi-

dimension quantitative objectives, and memory requirements for winning strate-

gies. An overview of the results for games without parity is presented in Table 4.1.

One-dimension games with parity are discussed in Sect. 4.3.3 and an overview is

given in Table 4.2.

We are the first to consider the conjunction of multi-dimension quantita-

tive objectives with a parity condition: our results are presented in the follow-

ing chapters. They were obtained through collaboration with Chatterjee and

Raskin [CRR12a,CRR12b,CRR14]. In this chapter, we also discuss undecidabil-

ity of multi-dimension total-payoff objectives, proved jointly with Chatterjee,

Doyen and Raskin [CDRR13a,CDRR13b].
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4.1.1 Assumptions and Additional Notations

Multi-dimension games. Throughout Chap. 4 to 7, we specifically address

the setting of games with multi-dimension weight functions. That is, w : E → Zk

where k ∈ N denotes the dimension of the weight vectors. Similarly, we consider

multi-dimension value functions f : Plays(G)→ (R ∪ {−∞, ∞})k.
Therefore, we generalize our game notation to G = (S1, S2, E, k, w), to in-

clude the number of dimensions explicitly.

Generalized objectives. The quantitative objectives defined in Sect. 2.3 are

naturally generalized to the multi-dimension context. Whenever limits are in-

volved, we consider componentwise limits. For the energy objective, the energy

level must stay positive in all dimensions at all times. Note that we sometimes

simply write multi instead of multi-dimension for the sake of brevity.

Pareto optimality. In the multi-dimension setting, we have to deal with vectors

of integer weights. The usual order on those vectors is partial. For example, if

no additional preference is given, vector (1, 2) is incomparable with vector (2, 1).

Therefore, the notion of optimal value is ill-defined, and it is natural to consider

so-called Pareto-optimal values. An element a of a set A ⊆ Zk is Pareto-optimal

(for the partial order ≥) in A if for all a′ ∈ A \ {a}, there exists a dimension l,

1 ≤ l ≤ k such that a′(l) < a(l).

Games with a parity objective. To improve readability of the following

chapters, we introduce a different notation for games extended with a priority

function p : S → N. We denote them as Gp = (S1, S2, E, k, w, p). Observe that

any game G without parity can trivially be seen as a game Gp with parity by

considering priority zero for all states.

Pure or general strategies. Within Chap. 4 through 6, we mostly study the

worst-case threshold problem for the mean-payoff objective and the unknown

initial credit problem for the energy one. Both are considered using the sure

semantics. Consequently, randomization adds no power and we focus on pure

strategies, which are sufficient to win.

Nonetheless, in Chap. 7, we investigate the particular case of pure finite-

memory strategies and study if introducing randomization can help in reducing

the memory requirements. It is indeed the case for some objectives, where ran-

domization can actually replace finite memory in winning strategies.
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4.2 Pure Strategies

4.2.1 Mean-Payoff and Energy

Multi-dimension mean-payoff and energy games (without parity) have been re-

cently introduced by Chatterjee et al. under the name of generalized mean-

payoff and energy games [CDHR10]. Complexities of the decision problems for

finite-memory strategies were investigated. It was also noted that infinite mem-

ory is strictly more powerful for multi-dimension mean-payoff games. However,

complexity for infinite-memory strategies was left open. In [VR11], Velner and

Rabinovich solved this open question. Our presentation here is mainly based on

a joint paper by both groups of authors that gives a complete study of the prob-

lem [VCD+12]. We sketch some of the important results and notions necessary

to understand our following contributions.

Multi energy games. Finite-memory strategies are always sufficient in multi-

dimension energy games.

Lemma 4.1 ([VCD+12, Lemma 1 and 2]). If P1 has a winning strategy in

a multi energy game, then he has a pure finite-memory winning strategy. If P2

has a winning strategy, then he has a pure memoryless winning strategy.

Proof sketch. First consider the case of P1. Assume P1 has a pure (possibly

infinite-memory) strategy λ1 ∈ ΛP1 that ensures the energy objective for some ini-

tial credit v0 ∈ Nk. The goal is to build a pure finite-memory strategy λf1 ∈ ΛPF1

that is also winning for the same initial credit.

To achieve this, consider the unfolding of the game when strategy λ1 is used

by P1. This gives an infinite tree. Each node in this tree can be labeled by its

corresponding energy level, representing the accumulated energy along the path

from the root down to this node, starting from the initial credit level. Clearly,

all nodes must be labeled with vectors of naturals since λ1 is winning. One can

define a relation on the set S×Nk based on the fact that P1 has more flexibility

when he has an higher amount of accumulated energy. That is, (s1, v1) ≤ (s2, v2)

if s1 = s2 and v1 ≤ v2. This relation is a well-quasi-order: it is transitive,

reflexive and has no infinite descending sequence nor infinite antichain (set of

incomparable elements).
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Consequently, any infinite branch (each representing a play) in the tree ad-

mits two positions i < j such that the energy level has increased between two vis-

its of the same state: (si, vi) ≤ (sj , vj). Based on this observation, one can stop

each branch when such a position j is reached. It can be proved that the result-

ing tree is finite, thanks to Kőnig’s lemma [Kő36] and Dickson’s lemma [Dic13].

When in position j, P1 can essentially reenact the same behavior as he did from

i to j: if he was able to maintain a positive energy starting from level vi, he

will also be able to do it starting from vj ≥ vi. Hence from this finite tree, it

is possible to extract a corresponding finite-memory winning strategy, for initial

credit v0.

Sufficiency of pure memoryless strategies for P2 follows from results on VASS

games [BJK10, Lemma 19]. A key idea of the argument is the following. Let

s ∈ S2 be a state in which P2 can choose between two successors s′ and s′′

such that P1 can win from s′ with initial credit v′ and from s′′ with initial

credit v′′. Then, P1 can ensure winning from s with initial credit v = v′ + v′′.

Consequently, P2 cannot benefit from alternating between s′ and s′′ (in the sense

that he still cannot win using memory if he is not able to win without memory).

The combination of winning credits for s′ and s′′ into a winning credit for s is part

of the synthesis algorithm developed in Chap. 6, as illustrated in Fig. 6.1.

Remark 4.2. Memory is useless for P2 in the sense that it never modifies the

answer to the unknown initial credit problem. Nevertheless, it may have some

impact on the required initial credit to win when P1 has a winning strategy. We

depict this case in Fig. 4.1 (presented in [VCD+12]). When P2 is memoryless,

initial credit (2, 0) suffices whether P2 decides to go left or right. In the latter

case, P1 has to alternate between the upper and lower edges, starting with the

latter. Observe that P1 needs memory to do so. Now if P2 has memory, he can

first go right once then go left. In that case, P1 needs either an initial credit

(2, 1) (if he comes back with the upper edge), or an initial credit (3, 0) (if he

takes the lower edge) to win. C

We now present precise complexity of the decision problem.

Theorem 4.3 ([VCD+12, Thm. 3]). The unknown initial credit problem in

multi energy games is coNP-complete.
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sa sb sc
(−2, 0) (0, 0)

(0, 0)

(−1, 1)

(1,−1)

Figure 4.1: Memory of P2 has an impact on needed initial credit: (2, 0) suffices
when P2 is memoryless, not when he uses memory.

Key ideas. Thanks to memoryless strategies being sufficient for P2, the unknown

initial credit problem in two-player games can be shown to be in coNP if the one-

player version (with only P1) is proved to be in P. Indeed, it then suffices to

guess a memoryless strategy of P2 and check that it is winning by solving the

one-player problem.

A polynomial algorithm for the one-player game, which is basically a graph

problem, is obtained by reduction to the problem of checking the existence of

a zero circuit in the graph. That is, a not necessarily simple cycle1 with non-

negative energy level in all dimensions. This problem is known to be in P [KS88].

The hardness result is by reduction from the complement of the 3SAT prob-

lem, which is coNP-complete [Pap94].

Multi mean-payoff games. In contrast to multi energy games, infinite mem-

ory may be needed to win multi mean-payoff games in general. This is already

the case in one-player games. For P2, proving that memoryless strategies are

sufficient requires different approaches for the infimum and supremum variants.

In the supremum case, it is based on an induction argument on the number

of states and existence of memoryless winning strategies of P2 on games pro-

jected to individual dimensions. In the infimum case, it uses a general result

by Kopczynski granting existence of memoryless strategies for P2 in all games

with objectives that are convex (i.e., closed under plays combination) and prefix-

independent [Kop06]. The infimum mean-payoff satisfies these hypotheses.

Lemma 4.4 ([VCD+12, Thm. 6 and 7]). In general, infinite-memory strate-

gies are necessary for P1 in multi mean-payoff games, both for infimum and

supremum variants. In both cases, memoryless strategies suffice for P2.

1A cycle is simple if it contains no repeated state, except for the origin state of course.



56 Chapter 4 – Multi-Dimension Quantitative Objectives

To illustrate the need for infinite memory, we consider the following example,

given in [VCD+12].

s1 s2 (0, 2)(2, 0)

(0, 0)

(0, 0)

Figure 4.2: Infinite memory is needed to win, both for objectives MeanInfG((1, 1))
and MeanSupG((2, 2)).

Example 4.5. Consider the one-player game depicted in Fig. 4.2.

First, let us study what kind of thresholds can be ensured by finite-memory

strategies. Note that such strategies induce ultimately periodic plays.2 Thus,

infimum and supremum limits coincide. Let us fix some pure finite-memory

strategy λf1 ∈ ΛPF1 . It induces a unique consistent play. Two cases are possible:

either it visits infinitely often both states, or it eventually settles on one of them.

In the former case, the middle edges appear in the periodic part. Hence, the

mean-payoff is of the form a · (2, 0) + b · (0, 0) + c · (0, 2), with a, b, c ∈ ]0, 1[∩Q
and a + b + c = 1. In the latter case, only vectors (2, 0) and (0, 2) can be

obtained. Consequently, threshold vectors (1, 1) and a fortiori (2, 2) cannot be

achieved with a finite-memory strategy.

Second, focus on the infimum mean-payoff objective, with threshold (1, 1).

It is possible to achieve this threshold using infinite memory. Indeed, let λ1 be

the strategy that loops n ∈ N times on s1, then goes to s2 and loops n times

on s2 before going back to s1, and then repeats this process forever for increasing

values of n. In the long-run, the contribution of the middle edges tends to zero,

and the infimum mean-payoff is (1, 1). Observe that infinite memory is necessary

to implement this strategy as n needs to grow boundlessly.

Finally, consider the supremum variant of the objective and a strategy that

is also based on alternating between s1 and s2 and looping on these states for

longer and longer times. However, instead of looping equal times on both states,

this strategy loops for longer and longer times each time it changes state. In

2A play π ∈ Plays(G) is ultimately periodic if it can be decomposed as π = ρ · (ρ′)ω, for some
finite prefixes ρ, ρ′ ∈ Prefs(G).
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particular, by increasing the number of loops sufficiently, we can ensure that the

contribution of the preceding finite prefix becomes negligible. In the long-run,

the supremum mean-payoff is equal to (2, 0) + (0, 2) = (2, 2).

Notice the gap existing between thresholds achievable for both variants when

infinite-memory strategies are considered. Clearly, from a practical standpoint,

threshold (2, 2) is unrealistic for actual controllers. This observation further

indicates that the infinite-memory model is inadequate for P1 in terms of appli-

cability. C

Complexity of the threshold problem when infinite memory is allowed varies

slightly depending on the considered variant.

Theorem 4.6 ([VCD+12, Thm. 6 and 7]). The worst-case threshold problem

is in NP∩ coNP for multi supremum mean-payoff games and coNP-complete for

multi infimum mean-payoff games.

Key ideas. The NP ∩ coNP-membership of the supremum variant relies on a

reduction to polynomially many one-dimension supremum mean-payoff games.

The coNP-hardness result for multi infimum mean-payoff games is based on

a reduction from the complement of 3SAT, similar to the one used for multi

energy games. The coNP-membership follows from sufficiency of memoryless

strategies for P2 and P-membership of the one-player problem. This one-player

version is solved by reduction to a variant of the zero circuit problem that was

used for multi energy games. This variant is called the non-negative multi-cycle

problem. The difference is that involved cycles do not need to be connected in

this variant. Intuitively, the potential negative effect induced by switching from

cycles to cycles (e.g., using the middle edges in Fig. 4.2) can be made negligible

by having the frequency of switching tending to zero. Hence it can be ignored

for the mean-payoff. Note that this is not the case for energy objectives, as such

connecting edges may decrease the energy. Even if their frequency tends to zero,

they are still used infinitely often and may prevent the energy objective from

being satisfied.

4.2.2 Total-Payoff

In Sect. 4.2.1, we surveyed the core results on multi-dimension mean-payoff and

energy games. Interestingly, the case of multi-dimension total-payoff games
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was unexplored prior to this thesis and the corresponding publications. In

this section we present results obtained jointly with Chatterjee, Doyen and

Raskin [CDRR13a,CDRR13b].

We first discuss the close relation existing between mean-payoff and total-

payoff in one-dimension games, and show that this relation breaks in multiple

dimensions. We then establish that the worst-case threshold problem for total-

payoff surprisingly becomes undecidable in the multi-dimension setting, both for

the infimum and supremum variants.

Total-payoff vs. mean-payoff. First, consider one-dimension games. In this

case, memoryless strategies exist for both players for both objectives, as discussed

in Sect. 2.3.2 [LL69,EM79,FV97,GZ04] and the supremum and infimum mean-

payoff problems coincide (which is not the case for total-payoff). Worst-case

threshold problems for mean-payoff and total-payoff are closely related as wit-

nessed by Lemma 4.7 and both have been shown to be in NP∩coNP [ZP96,GS09]

(and even in UP∩coUP [Jur98,GS09]). We denote by {0}k the k-dimension zero

vector.

Lemma 4.7. Let G = (S1, S2, E, k, w) be a two-player game and sinit ∈ S be an

initial state. Let A, B, C and D respectively denote the following assertions.

A. Player P1 has a winning strategy for MeanSupG({0}k).

B. Player P1 has a winning strategy for MeanInfG({0}k).

C. There exists a threshold µ ∈ Qk such that P1 has a winning strategy for

TotalInfG(µ).

D. There exists a threshold µ′ ∈ Qk such that P1 has a winning strategy for

TotalSupG(µ′).

For games with one-dimension (k = 1) weights, all four assertions are equivalent.

For games with multi-dimension (k > 1) weights, the only implications that hold

are: C ⇒ D ⇒ A and C ⇒ B ⇒ A. All other implications are false.

The statement of Lemma 4.7 is depicted in Fig. 4.3: the only implications

that extend to the multi-dimension case are depicted by solid arrows.

Proof. Specifically, the implications that remain true in multi-dimension games

are the trivial ones: satifaction of the infimum version of a given objective triv-

ially implies satisfaction of its supremum version, and satisfaction of infimum
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A : ∃λA1 � MeanSupG({0}k) D : ∃µ ∈ Qk, ∃λD1 � TotalSupG(µ)

B : ∃λB1 � MeanInfG({0}k) C : ∃µ′ ∈ Qk, ∃λC1 � TotalInfG(µ′)

Figure 4.3: Equivalence between worst-case threshold problems for mean-payoff
and total-payoff. Dashed implications are only valid for one-dimension games.

(resp. supremum) total-payoff for some finite threshold µ ∈ Qk implies satisfac-

tion of infimum (resp. supremum) mean-payoff for threshold {0}k as from some

point on, the corresponding sequence of mean-payoff infima (resp. suprema) in

all dimensions t, 1 ≤ t ≤ k, can be lower-bounded by a sequence of elements

of the form µ(t)
n with n the length of the prefix, which tends to zero for an in-

finite play. That is thanks to the sequence of total-payoffs over prefixes being

a sequence of integers: it always achieves the value of its limit µ(t) instead of

only tending to it asymptotically as could a sequence of rationals such as the

mean-payoffs. This sums up to C ⇒ D ⇒ A and C ⇒ B ⇒ A being true even

in the multi-dimension setting.

In the one-dimension case, all assertions are equivalent. First, we have that

infimum and supremum mean-payoff problems coincide as memoryless strategies

suffice for both players. Thus, we add A ⇒ B and D ⇒ B by transitivity.

Second, consider an optimal strategy for P1 for the mean-payoff objective of

threshold 0. This strategy is such that all cycles formed in the outcome have

non-negative effect, otherwise P1 cannot ensure winning. Thus, the total-payoff

over any outcome that is consistent with the same optimal strategy is at all times

bounded from below by −2 · (|S| − 1) ·W (once for the initial cycle-free prefix,

and once for the current cycle being formed). Therefore, we have that B ⇒ C,

and we obtain all other implications by transitive closure.

For multi-dimension games, all dashed implications are false. We specifically

consider two of them.

1. To show that implication D ⇒ B does not hold, consider the one-player

game depicted in Fig. 4.4. Clearly, any finite vector µ ∈ Qk for the supre-

mum total-payoff objective can be achieved by an infinite memory strategy
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s(1,−2) (−2, 1)

Figure 4.4: Satisfaction of supre-
mum total-payoff does not imply
satisfaction of infimum mean-payoff.

s1 s2(−1, 1, 0) (1,−1, 0)

(−1,−1,−1)

(−1,−1,−1)

Figure 4.5: Satisfaction of infimum mean-
payoff does not imply satisfaction of
supremum total-payoff.

consisting in playing both loops successively for longer and longer periods,

each time switching after getting back above the threshold in the consid-

ered dimension. However, it is impossible to build any strategy, even with

infinite memory, that provides an infimum mean-payoff of (0, 0) as the limit

mean-payoff would be at best a linear combination of the two cycles values,

i.e., strictly less than zero in at least one dimension in any case.

2. Lastly, failure of implication B ⇒ D in multi-dimension games can be

witnessed in Fig. 4.5. Clearly, the strategy that plays for n steps in the

left cycle, then goes for n steps in the right one, then repeats for n′ > n

and so on, is a winning strategy for the infimum mean-payoff objective of

threshold (0, 0, 0). Nevertheless, for any strategy of P1, the outcome is such

that either (i) it only switches between cycles a finite number of time, in

which case the sum in dimension 1 or 2 will decrease to infinity from some

point on, or (ii) it switches infinitely and the sum of weights in dimension 3

decreases to infinity. In both cases, the supremum total-payoff objective is

not satisfied for any finite vector µ ∈ Q3.

All other implications are deduced false as they would otherwise contradict

the last two cases by transitivity.

Multi total-payoff is undecidable. In multi-dimension games, we have seen

that the worst-case threshold problem for infimum mean-payoff is coNP-complete

whereas it is in NP ∩ coNP for supremum mean-payoff. In both cases, P1 needs

infinite memory to win, and memoryless strategies suffice for P2 [VCD+12].

The case of total-payoff objectives in multi-dimension games has never been

considered before [CDRR13a, CDRR13b]. Surprisingly, the relation established
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in Lemma 4.7 cannot be fully transposed in this context. We show that the

threshold problem indeed becomes undecidable for multi-dimension games, even

for a fixed number of dimensions.

Theorem 4.8. The worst-case threshold problem for infimum and supremum

total-payoff objectives is undecidable in multi-dimension games, for five dimen-

sions.

We reduce the halting problem for two-counter machines to the threshold

problem for two-player total-payoff games with five dimensions. Counters take

values (v1, v2) ∈ N2 along an execution, and can be incremented or decremented

(if positive). A counter can be tested for equality to zero, and the machine

can branch accordingly. We build a game with a sup. (resp. inf.) total-payoff

objective of threshold (0, 0, 0, 0, 0) for P1, in which P1 has to faithfully simulate

an execution of the machine, and P2 can retaliate if he does not. We present

gadgets by which P2 checks that (a) the counters are always non-negative, and

that (b) a zero test is only passed if the value of the counter is really zero. The

current value of counters (v1, v2) along an execution is encoded as the total sum

of weights since the start of the game, (v1,−v1, v2,−v2,−v3), with v3 being the

number of steps of the computation. Hence, along a faithful execution, the 1st

and 3rd dimensions are always non-negative, while the 2nd, 4th and 5th are

always non-positive. To check that counters never go below zero, P2 is always

able to go to an absorbing state with a self-loop of weight (0, 1, 1, 1, 1) (resp.

(1, 1, 0, 1, 1)). To check that all zero tests on counter 1 (resp. 2) are faithful, P2

can branch after a test to an absorbing state with a self-loop of weight (1, 0, 1, 1, 1)

(resp. (1, 1, 1, 0, 1)). Using these gadgets, P2 can punish an unfaithful simulation

as he ensures that the sum in the dimension on which P1 has cheated always stays

strictly negative and the outcome is thus losing (it is only the case if P1 cheats,

otherwise all dimensions become non-negative). When an execution halts (with

counters equal to zero w.l.o.g.) after a faithful execution, it goes to an absorbing

state with weight (0, 0, 0, 0, 1), ensuring a winning outcome for P1 for the total-

payoff objective. If an execution does not halt, the 5th dimension stays strictly

negative and the outcome is losing.

Proof. From a two-counter machine (2CM)M, we construct a two-player gameG
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with five dimensions and an infimum (equivalently supremum) total-payoff ob-

jective such that P1 wins for threshold (0, 0, 0, 0, 0) if and only if the 2CM halts.

A 2CM has two counters that can be incremented or decremented, and can

test if their value is equal to zero (called zero test) and branch accordingly. The

halting problem for 2CMs is undecidable [Min61]. Assume w.l.o.g. that we have

a 2CM M such that if it halts, it halts with the two counters equal to zero.3 In

the game we construct, P1 has to faithfully simulate the 2CM M. The role of

P2 is to ensure that he does so by retaliating if it is not the case, hence making

the outcome losing for the total-payoff objective.

The game is built as follows. The states of G are copies of the control

states of M (plus some special states discussed in the following). Edges rep-

resent transitions between these states. The payoff function maps edges to 5-

dimension vectors of the form (c1,−c1, c2,−c2, d), that is, two dimensions for the

first counter C1, two for the second counter C2, and one additional dimension.

Each increment of counter C1 (resp. C2) in M is implemented in G as a tran-

sition of weight (1,−1, 0, 0,−1) (resp. (0, 0, 1,−1,−1). For decrements, we have

weights respectively (−1, 1, 0, 0,−1) and (0, 0,−1, 1,−1) for C1 and C2. There-

fore, the current value of counters (v1, v2) along an execution of the 2CM M is

represented in the game as the current sum of weights, (v1,−v1, v2,−v2,−v3),

with v3 the number of steps of the computation. The two dimensions per counter

are used to enforce faithful simulation of non-negativeness of counters and zero

test. The last dimension is decreased by one for every transition, except when

the machine halts, from when it is incremented forever (i.e., the play in G goes

to an absorbing state with self-loop (0, 0, 0, 0, 1)). This is used to ensure that a

play in G is winning iff M halts.

We now discuss how this game G ensures faithful simulation of the 2CM M
by P1.

◦ Increment and decrement of counter values are easily simulated using the

first four dimensions.

◦ Values of counters may never go below zero. To ensure this, we allow P2 to

branch after every step of the 2CM simulation to two special states, s1
stop neg

and s2
stop neg, which are absorbing and with self-loops of respective weights

3This is w.l.o.g. as it suffices to plug a machine that decreases both counters to zero at the
end of the execution of the considered machine.
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(0, 1, 1, 1, 1) and (1, 1, 0, 1, 1). If a negative value is reached on counter C1

(resp. C2), P2 can clearly win the game by branching to state s1
stop neg

(resp. s2
stop neg), as the total-payoff in the dimension corresponding to the

negative counter will always stay strictly negative. On the contrary, if P2

decides to go to s1
stop neg (resp. s2

stop neg) when the value of C1 (resp. C2)

is positive, then P1 wins the game as this dimension will be positive and

the other four will grow boundlessly. So these transitions are only used if

P1 cheats.

◦ Zero tests are correctly executed. In the same spirit, we allow P2 to branch

to two absorbing special states after a zero test, s1
pos zero and s2

pos zero with

self-loops of weights (1, 0, 1, 1, 1) and (1, 1, 1, 0, 1). Such states are used

by P2 if P1 cheats on a zero test (i.e., pass the test with a strictly pos-

itive counter value). Indeed, if a zero test was passed with the value of

counter C1 (resp. C2) strictly greater than zero, then the current sum

(v1,−v1, v2,−v2, v3) is such that −v1 (resp. −v2) is strictly negative. By

going to s1
pos zero (resp. s2

pos zero), P2 ensures that this sum will remain

strictly negative in the considered dimension forever and the play is lost

for P1.

Therefore, if P1 does not faithfully simulateM, he is guaranteed to lose in G.

On the other hand, if P2 stops a faithful simulation, P1 is guaranteed to win. It

remains to argue that he wins iff the machine halts. Indeed, if the machine M
halts, then P1 simulates its execution faithfully and either he is interrupted and

wins, or the simulation ends in an absorbing state with a self-loop of weight

(0, 0, 0, 0, 1) and he also wins. Indeed, given that this state can only be reached

with values of counters equal to zero (by hypothesis on the machineM, without

loss of generality), the running sum of weights will reach values (0, 0, 0, 0, n)

where n grows to infinity, which ensures satisfaction of the infimum (and thus

supremum) total-payoff objective for threshold (0, 0, 0, 0, 0). On the opposite, if

the 2CM M does not halt, P1 has no way to reach the halting state by means

of a faithful simulation and the running sum in the fifth dimension always stays

negative, thus inducing a losing play for P1, for both variants of the objective.

Consequently, we have that solving multi-dimension games for either the

supremum or the infimum total-payoff objective is undecidable.
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Remark 4.9. Decidability of the worst-case threshold problem in total-payoff

games for two, three or four dimensions is open. C

We end this section by noting that in multi-dimension total-payoff games, P1

may need infinite memory to win, even when all states belong to him (S2 = ∅).
Consider the game depicted in Fig. 4.4. As discussed in the proof of Lemma 4.7,

given any threshold vector µ ∈ Q2, P1 has a strategy to win the supremum

total-payoff objective: it suffices to alternate between the two loops for longer

and longer periods, each time waiting to get back above the threshold in the

considered dimension before switching. This strategy needs infinite memory

and actually, there exists no finite-memory strategy that can achieve a finite

threshold vector: the negative amount to compensate grows boundlessly with

each alternation, and thus no amount of finite memory can ensure to go above

the threshold infinitely often.

4.3 Pure Finite-Memory Strategies

In general, multi mean-payoff requires infinite memory for P1, whereas for en-

ergy, finite memory is enough. With regard to practical applicability, we need

strategies of P1 that can be effectively implemented in controllers. It is thus

reasonable to retrict P1 to finite-memory strategies in mean-payoff games and

look at the corresponding decision problem. This restriction does not change the

situation of P2, for which memoryless strategies still suffice.

Considering games under pure finite-memory strategies (for both players) has

the advantage of yielding ultimately periodic plays. Such plays share nice proper-

ties with regard to the mean-payoff objective: supremum and infimum variants

coincide as the limit exists over them. With this restriction, we avoid unrealistic

behaviors as witnessed in Example 4.5 under infinite-memory strategies.

Unfortunately, restricting P1 to finite-memory strategies is not sufficient in

the total-payoff setting. The worst-case threshold problem does stay undecidable.

4.3.1 Mean-Payoff and Energy

In multi energy games, finite memory is already sufficient for P1 (Lemma 4.1),

hence the unknown initial credit problem remains coNP-complete.
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In multi mean-payoff games, restriction to finite memory permits to get back

the equivalence with energy games that is well-known in the one-dimension con-

text (see Sect. 2.3.2).

Lemma 4.10 ([VCD+12, Lemma 6]). For all multi-dimension games, the

answer to the unknown initial credit problem is Yes if and only if the answer to

the worst-case threshold problem4 under finite-memory strategies is Yes.

The crux of this equivalence is that finite-memory winning strategies, both

for energy and for mean-payoff objectives, induce non-negative (not necessarily

simple) cycles. Such cycles are non-decreasing with regard to the energy level,

and consequently, yield a non-negative mean-payoff. If such cycles cannot be

guaranteed by a finite-memory strategy, then this strategy is losing for both

objectives, as it means that strictly negative cycles on some dimensions can be

forced by P2 (consuming an infinite amount of energy and inducing a strictly

negative mean-payoff).

4.3.2 Total-Payoff

Our proof of undecidability (Thm. 4.8) relies on a reduction from the halt-

ing problem for two-counter machines. This proof extends easily when P1 is

restricted to finite-memory strategies. Indeed, in the game based on the two-

counter machine, if P1 wins, he wins with a finite-memory strategy that basically

consists in implementing the machine. Clearly, if such a machine stops after a

finite time, then it only requires a finite amount of memory for its computations.

Due to the undecidability of the total-payoff objectives in multi-dimension,

we only focus on mean-payoff and energy games in Chap. 5 to 7. Nonetheless,

we come back to the total-payoff objective in Part III, where we introduce alter-

native quantitative objectives, called window objectives, with similar flavor but

preserving decidability in the multi-dimension setting.

4.3.3 Synthesis Complexity

From decision to synthesis. All the results presented before are for decision

problems: the worst-case threshold problem for mean-payoff and the unknown

4Whenever the threshold is not specified, it should be understood as threshold {0}k.
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MP EG par. MP+par. EG+par.

complexity NP ∩ coNP

P1 mem. pure memoryless pure infinite pure pseudo-poly.

P2 mem. pure memoryless

Table 4.2: Overview of results on one-dimension quantitative objectives com-
bined with parity.

initial credit problem for energy games. In practice, it is often needed not only to

decide if P1 has a winning strategy, but also to actually synthesize such a winning

strategy (see Sect. 2.2.3). This is a reason why restricting P1 to finite-memory

strategies is important.

In the remaining of Part II (Chap. 5 to 7), we study the synthesis problem

for finite-memory strategies in multi-dimension games with mean-payoff and en-

ergy objectives. We provide tight exponential bounds on memory and establish

an optimal synthesis algorithm. These results are issued from joint work with

Chatterjee and Raskin [CRR12a,CRR12b,CRR14].

Conjunction with parity. We present the first results considering the con-

junction of multi-dimension quantitative objectives with parity objectives. All

the results we provide extend to this more general setting. Observe that since we

consider the synthesis of finite-memory strategies, it follows from Lemma 4.10

that multi-dimension energy with parity and multi-dimension mean-payoff with

parity are equivalent.

Conjunction between parity and one-dimension quantitative objectives has

been studied in the literature. We give an overview in Table 4.2. Mean-payoff

parity games were studied in [CHJ05]: an exponential algorithm was given to

decide if there exists a winning strategy for the worst-case threshold problem

(which in general was shown to require infinite memory); and an improved algo-

rithm was presented in [BMOU11]. Energy parity games were studied in [CD12]:

it was shown that the unknown initial credit problem is in NP∩coNP, and an ex-

ponential algorithm was given. It was also shown that, for one-dimension energy

parity objectives, finite-memory strategies with exponential memory (precisely,

pseudo-polynomial) are sufficient, and that the decision problem for mean-payoff

parity objective can be reduced to the one for energy parity objective. We use
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some of these results in the following chapters, particularly in Chap. 7, where we

show that randomness can replace memory in one-dimension mean-payoff parity

games.





CHAPTER 5
Memory in Multi Energy Parity

Games

Single Exponential Upper Bound � Single Exponential Lower Bound � Wrap-up

We establish optimal memory bounds for pure finite-memory winning strategies

in multi energy parity games (MEPGs). As a corollary, we obtain results for pure

finite-memory winning strategies on multi mean-payoff parity games (MMPPGs).

We first prove that single exponential memory is sufficient for winning strate-

gies. Our result is a significant improvement over the triple exponential upper

bound that can be obtained naively from the results known in literature [BJK10],

even in the case of multi-dimension energy games without parity.

Additionally, we present how the parity condition in a MEPG can be removed

by adding additional energy dimensions.

Second, we give a matching lower bound by presenting a family of game

graphs where exponential memory is necessary in multi-dimension energy games

(without parity), even when all the transition weights belong to {−1, 0,+1}.
All these results were obtained through collaboration with Chatterjee and

Raskin [CRR12a,CRR12b,CRR14].

69
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5.1 Single Exponential Upper Bound

Multi energy parity games. A sample game is depicted in Fig. 5.1. The

key point in the upper bound proof on memory is to understand that for P1 to

win a multi energy parity game, he must be able to force cycles whose energy

level is positive in all dimensions and whose minimal parity is even. As stated in

the next lemma, finite-memory strategies are sufficient for multi energy parity

games for both players.

s0
2

s1
3

s2
1

s3
2

s4
3

s5
0

(−1, 1) (0, 2)

(0, 1) (0, 0)

(1,−1) (−2, 1)

(0,−1)

(2, 0)

〈s0, (0, 0)〉

〈s1, (−1, 1)〉 〈s2, (0, 2)〉

〈s3, (−1, 2)〉 〈s3, (0, 2)〉

〈s4, (0, 1)〉 〈s5, (−2, 3)〉

〈s0, (0, 0)〉 〈s3, (0, 3)〉

Figure 5.1: Two-dimension energy parity game and even-parity self-covering tree
representing an arbitrary finite-memory winning strategy.

Lemma 5.1 (Extension of Lemma 4.1). If P1 has a winning strategy in a

multi energy parity game, then he has a pure finite-memory one. If P2 has a

winning strategy in a multi energy parity game, then he has a pure memoryless

one.

Proof. The first part of the result follows using the standard well-quasi-ordering

argument (straightforward extension of [CDHR10, Lemma 2]). The second

part follows by the classical edge induction argument: [CDHR10, Lemma 3]

and [CD12, Lemma 3] show the result using edge induction for multi energy and

energy parity games, respectively. Repeating the arguments of [CD12, Lemma 3],

and replacing the part on single energy objectives by the argument of [CDHR10,

Lemma 3] for multi energy objectives, we obtain the desired result.
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By Lemma 5.1, we know that w.l.o.g. both players can be restricted to play

pure finite-memory strategies. The property on the cycles can then be formalized

as follows.

Lemma 5.2. Let Gp = (S1, S2, E, k, w, p) be a multi energy parity game and

sinit ∈ S be an initial state. Let λpf1 ∈ ΛPF1 be a winning strategy of P1 for

initial credit v0 ∈ Nk. Then, for all λpm2 ∈ ΛPM2 , the outcome is a regular

play π = ρ · (η∞)ω, with ρ ∈ Prefs(Gp), η∞ ∈ S+, such that EL(η∞) ≥ 0 and

Par(π) = min {p(s) | s ∈ η∞} is even.

Proof. Recall that both players play with pure finite memory strategies. There-

fore, a finite number of decisions are made and the outcome is a regular (i.e.,

ultimately periodic) play π = ρ · (η∞)ω. Note that EL(ρ) does not have to be

positive, as P1 may have v0 > EL(ρ). Similarly, priorities of states visited in ρ

have no impact on winning as they are only visited a finite number of times.

First, suppose EL(η∞) < 0 on some dimension 1 ≤ j ≤ k. Then, after m > 0

cycles, for some n > 0, the energy level will be EL(π(n)) = EL(ρ · (η∞)m) =

EL(ρ) + m · EL(η∞). Since v0 is finite and m → ∞, there exist some m,n > 0,

such that v0 + EL(π(n)) < 0 on dimension j and λ1 is not winning. Second,

suppose min {p(s) | s ∈ η∞} is odd. Since the set of states visited infinitely often

is exactly the set of states in η∞, this implies that Par(π) is odd, and thus λ1 is

not winning.

A self-covering path in a game, straightforwardly extending the notion in-

troduced by Rackoff [Rac78] for vector addition systems (VAS), is a sequence

of states s0s1s2 . . . sm such that there exist two positions i and j that verify

0 ≤ i < j ≤ m, si = sj and EL(s0 . . . si) ≤ EL(s0 . . . si . . . sj). In other words,

such a path describes a finite prefix followed by a cycle which has a non-negative

effect on the energy level. Ensuring such cycles is crucial to win the energy

objective. With the notion of regular play of Lemma 5.2, we generalize the no-

tion of self-covering path to include the parity condition. We show here that, if

such a path exists, then the lengths of its cycle and the prefix needed to reach

it can be bounded. Bounds on the strategy follow. In [Rac78], Rackoff showed

how to bound the length of self-covering paths in VAS. This work was extended

to vector addition systems with states (VASS) by Rosier and Yen [RY86]. Re-

cently, Brázdil et al. introduced reachability games on VASS and the notion of
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self-covering trees [BJK10]. Their Zero-safety problem with ω initial marking

is equivalent to multi energy games with weights in {−1, 0, 1}, and without the

parity condition. They showed that if winning strategies exist for P1, then some

of them can be represented as self-covering trees of bounded depth. Trees have to

be considered instead of paths, as in a game setting all the possible choices of the

adversary (P2) must be considered. Here, we extend the notion of self-covering

trees to even-parity self-covering trees, in order to handle parity objectives.

Definition 5.3 (Even-parity self-covering tree). An even-parity self-cover-

ing tree (epSCT) for s ∈ S is a finite tree T = (Q,R), where Q is the set of

nodes, Θ: Q→ S × Zk is a labeling function and R ⊂ Q×Q is the set of edges,

such that

◦ The root of T is labeled 〈s, (0, . . . , 0)〉.

◦ If ς ∈ Q is not a leaf, then let Θ(ς) = 〈t, u〉, t ∈ S, u ∈ Zk, such that

– if t ∈ S1, then ς has a unique child ϑ such that Θ(ϑ) = 〈t′, u′〉,
(t, t′) ∈ E and u′ = u+ w(t, t′);

– if t ∈ S2, then there is a bijection between children of ς and edges of

the game leaving t, such that for each successor t′ ∈ S of t in the game,

there is one child ϑ of ς such that Θ(ϑ) = 〈t′, u′〉, u′ = u+ w(t, t′).

◦ If ς is a leaf, then let Θ(ς) = 〈t, u〉 such that there is some ancestor ϑ of ς

in T such that Θ(ϑ) = 〈t, u′〉, with u′ ≤ u, and the downward path from

ϑ to ς, denoted by ϑ ς, has minimal priority even. We say that ϑ is an

even-descendance energy ancestor of ς.

Intuitively, each path from root to leaf is a self-covering path of even parity

in the game graph so that plays unfolding according to such a tree correspond

to winning plays of Lemma 5.2. Thus, the epSCT fixes how P1 should react

to actions of P2 in order to win the MEPG (Fig. 5.1). Note that as the tree

is finite, one can take the largest negative number that appears on a node in

each dimension to compute an initial credit for which there is a winning strategy

(i.e., the one described by the tree). In particular, recall W denote the maximal

absolute weight appearing on an edge in Gp. Then, for an epSCT T of depth l, it

is straightforward to see that the maximal initial credit required is at most l ·W
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as the maximal decrease at each level of the tree is bounded by W . We suppose

W > 0 as otherwise, any strategy of P1 is winning for the energy objective, for

any initial credit vector v0 ∈ Nk.
Let us explicitely state how P1 can deploy a strategy λT1 ∈ ΛPF1 based on

an epSCT T = (Q,R). We refer to such a strategy as an epSCT strategy. It

consists in following a path in the tree T , moving a pebble from node to node

and playing in the game depending on edges taken by this pebble. Each time a

node ς such that Θ(ς) = 〈t, u〉 is encountered, we do the following.

• If ς is a leaf, the pebble directly goes up to its oldest even-descendance

energy ancestor ϑ. By oldest we mean the first encountered when going

down in the tree from the root. Note that this choice is arbitrary, in an

effort to ease following proof formulations, as any one would suit.

• Otherwise, if ς is not a leaf,

- if t ∈ S2 and P2 plays state t′ ∈ S, the pebble is moved along the edge

going to the only child ϑ of ς such that Θ(ϑ) = 〈t′, u′〉, u′ = u+w(t, t′);

- if t ∈ S1, the pebble moves to ϑ, Θ(ϑ) = 〈t′, u′〉, the only child of ς,

and P1 strategy is to choose the state t′ in the game.

If such an epSCT T of depth l exists for a game Gp, then P1 can play the strategy

λT1 ∈ ΛPF1 to win the game with initial credit bounded by l ·W .

Bounding the depth of epSCTs. Consider a multi energy game without

parity. Then, the priority condition on downward paths from ancestor to leaf

is not needed and self-covering trees (i.e., epSCTs without the condition on

priorities) suffice to describe winning strategies. One can bound the size of

SCTs using results on the size of solutions for linear diophantine equations (i.e.,

with integer variables) [BT76]. In particular, recent work on reachability games

over VASS with weights {−1, 0, 1} [BJK10, Lemma 7] states that if P1 has a

winning strategy on a VASS, then he can exhibit one that can be described as

an SCT whose depth is at most l = 2(d−1)·|S| · (|S|+ 1)c·k
2
, where c is a constant

independent of the considered VASS and d its branching degree (i.e., the highest

number of outgoing edges on any state).
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Naive use of this bound for multi energy games with arbitrary integer weights

would induce a triple exponential bound for memory. A straightforward trans-

lation of a game with arbitrary weights into an equivalent game that uses only

weights in {−1, 0, 1} induces a blow-up by W in the size of the state space,

and thus an exponential blow-up by W in the depth of the tree, which becomes

doubly exponential as we have

l = 2(d−1)·W ·|S| · (W · |S|+ 1)c·k
2

= 2(d−1)·2V ·|S| · (W · |S|+ 1)c·k
2
,

where V denotes the number of bits used by the encoding of W . Moreover,

the width of the tree increases as dl, i.e., it increases exponentially with the

depth. So straight application of previous results provides an overall tree of

triple exponential size. In this chapter, we improve this bound and prove a single

exponential upper bound, even for multi energy parity games. We proceed in two

steps, first studying the depth of the epSCT, and then showing how to compress

the tree into a directed acyclic graph (DAG) of single exponential size.

Lemma 5.4. Let Gp = (S1, S2, E, k, w, p) be a multi energy parity game such

that W is the maximal absolute weight appearing on an edge and d the branching

degree of Gp. Let sinit ∈ S be an initial state. Suppose there exists a finite-

memory winning strategy for P1. Then there is an even-parity self-covering tree

for sinit of depth at most l = 2(d−1)·|S| · (W · |S|+ 1)c·k
2

, where c is a constant

independent of Gp.

Lemma 5.4 eliminates the exponential blow-up in depth induced by a naive

coding of arbitrary weights into {−1, 0, 1} weights, and implies an overall doubly

exponential upper bound. Our proof is a generalization of [BJK10, Lemma 7],

using a more refined analysis to handle both parity and arbitrary integer weights.

The idea is as follows. First, consider the one-player case. The epSCT is reduced

to a path. By Lemma 5.2, it is composed of a finite prefix, followed by an

infinitely repeated sequence of positive energy level and even minimal priority.

We bound the length of this sequence by eliminating cycles that are not needed

for energy or parity. Second, to extend the result to two-player games, we use an

induction on the number of choices available for P2 in a given state. Intuitively,

we show that if P1 can win with an epSCT TA when P2 plays edges from a set A

in a state s, and if he can also win with an epSCT TB when P2 plays edges from
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a set B, then he can win when P2 chooses edges from both A and B, with an

epSCT whose depth is bounded by the sum of depths of TA and TB.

Proof. The proof is made in two steps. First, we consider the one-player case,

where S2 = ∅. Second, we use an induction scheme over the choice degree of P2

to extend our results to the two-player case.

We start with S2 = ∅, the one-player game. By Lemma 5.2, a winning play is

of the form π = ρ·(η∞)ω such that EL(η∞) ≥ 0 and Par(π) = min {p(s) | s ∈ η∞}
is even. Notice that such a play corresponds to the epSCT defined above, as it

reduces to an even-parity self-covering path 〈sinit, (0, . . . , 0)〉  〈s, u〉  〈s, u′〉
with u′ ≥ u. Therefore its existence is guaranteed and it remains to bound

its length. Given such a path, the idea is to eliminate unnecessary cycles, in

order to reduce its length while maintaining the needed properties (i.e., positive

energy and even minimal priority). First, notice that cycles in the sub-path

〈sinit, (0, . . . , 0)〉 〈s, u〉 can be trivially erased as they are only visited a finite

number of times and thus (a) the initial credit can compensate for the loss of

their potential positive energy effect, and (b) they do not contribute in the parity.

Now consider the sub-path 〈s, u〉  〈s, u′〉. Since it induces a winning play, its

minimal priority is even. Let pm be this priority. We may suppose w.l.o.g. that

p(s) = pm, otherwise it suffices to shift this sub-path to 〈s′, v〉 〈s′, v′〉 for some

state s′ such that p(s′) = pm and v′ ≥ v, and add the sub-path 〈s, u〉  〈s′, v〉
to the finite prefix. Now we may eliminate each cycle of 〈s, u〉 〈s, u′〉 safely in

regards to the parity objective as they only contain states with greater or equal

priority. Thus, we only need to take care of the energy, and fall under the scope

of [BJK10, Lemma 15] for the special case of weights in {−1, 0, 1}, where an

upper bound h (|S|, k) = (|S|+ 1)c·k
2

on the length of such a path is shown.

For a one-player game G with weights in {−W,−W + 1, . . . ,W − 1,W}, we

claim that an upper bound h (W, |S|, k) = (W · |S|+ 1)c·k
2

is obtained. In-

deed, one can translate Gp = (S1, S2, E, k, w, p) into an equivalent game G′p′ =

(S′1, S2, E
′, k, w′, p′) such that each edge of Gp is split into at most W edges

in G′p′ , with at most (W − 1) dummy states in between, so that each edge of

G′p′ only uses weights in {−1, 0, 1}. Let Sd denote the set of these added dummy
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states. We define this translation Tr : Gp 7→ G′p′ as follows:

Tr(S1) = S1 ∪ Sd, Tr(S2) = S2, Tr(sinit) = sinit,

Tr(E) =
⋃

(s,t)∈E

Tr((s, t)), Tr(k) = k, Tr(w) = w′ : E′ → {−1, 0, 1}k .

Finally, we define Tr(p) = p′ : S′ → N such that for all (s, t) ∈ E such that

m = max {w(s, t)(j) | 1 ≤ j ≤ k} − 1, we have that

Tr ((s, t)) =
{

(s, s1
d), (s

1
d, s

2
d), . . . , (s

m−1
d , smd ), (smd , t)

}
such that(

∀ j > 0, sjd ∈ Sd ∧ p′(sjd) = p(s)
)
∧

∑
(q,r)∈Tr((s,t))

w′(q, r) = w(s, t).

To be formally correct, we have to add that for all sd ∈ Sd, we have degreein(sd) =

degreeout(sd) = 1, and for all s 6∈ Sd, we have p′(s) = p(s). This translation

does not hinder the outcome of the game as each edge in Gp has a unique

corresponding path in G′p′ that preserves the weights and the visited priorities,

and that offers no added choice to P1. Since Gp possesses |E| ≤ |S|2 edges, and

for each edge of Gp, we add at most (W − 1) dummy states in G′p′ , we have

|S′| ≤ |S|+ |S|2 · (W −1) ≤ |S|2 ·W . Therefore, by applying [BJK10, Lemma 15]

on G′p′ , we obtain the following upper bound:

h (W, |S|, k) = h
(
|S′|, k

)
≤
(
|S|2 ·W + 1

)c·k2

≤ (W · |S|+ 1)c
′·k2

for some constant c′ that is independent of Gp.

Now, consider S2 6= ∅. (i) We extend [BJK10, Lemma 16] for parity. This will

help us to establish an induction scheme over the choice degree of P2. Suppose

s ∈ S2 has more than one outgoing edge. Let τ = (s, t) ∈ E be one of them and

R ⊂ E denote the nonempty set of other outgoing edges. Let Gτp (resp. GRp ) be

the game induced when removing R (resp. τ) from Gp. Suppose that (a) s is

winning for P1 in GRp for initial credit vR ∈ Nk, and (b) there exists some state

s′ ∈ S such that s′ is winning for P1 in Gτp for initial credit vτ ∈ Nk. We claim

that s′ is winning in Gp for initial credit v0 = vτ + vR. Indeed, let λτ1 and λR1
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resp. denote winning strategies for P1 in Gτp and GRp . Let P1 use the following

strategy. Player P1 plays λτ1 as long as P2 does not play any edge of R. If such

an edge is played, then P1 switches to strategy λR1 and plays it until edge τ is

played again by P2, in which case P1 switches back to λτ1 , and so on. In this

way, the outcome of the game is guaranteed to be a play π = s′ . . . s . . . s . . . s . . .

resulting from a merge between a play consistent with λτ1 over Gτp (whose energy

level is bounded by −vτ at all times), and a play consistent with λR1 over GRp
(whose energy level is bounded by −vR at all times). Therefore, the combined

overall energy level of any prefix ρ of this play is bounded by (−vτ − vR) as

positive cycles in Gτp and GRp do remain positive in Gp. Furthermore, the parity

condition is preserved in Gp. Indeed, suppose it is not. Thus, there exists a state

visited infinitely often in the outcome such that its priority is minimal and odd.

However, as the outcome results from merging plays resp. consistent with λτ1
and λR1 , this implies that one of those strategies yields an odd minimal priority,

which contradicts the fact that they are winning. This proves the claim.

(ii) We apply the induction scheme of [BJK10, Lemma 18] on r = |{(s, t) ∈
E | s ∈ S2}| − |S2| ≤ (d − 1) · |S|, the choice degree of P2. Notice that our

translation Tr : Gp 7→ G′p′ maintains this choice degree unchanged. The claim is

that for a winning state s′, there is an epSCT of depth bounded by 2r·h(W, |S|, k).

We have proved that for the base case r = 0, similar to S2 = ∅, this claim is true.

So assume it holds for r, it remains to prove that it is preserved for r + 1. Let

s ∈ S2 be such that P2 has at least two outgoing edges. As before, we define Gτp
and GRp . Clearly, the choice degree of P2 is at most r in both games. Let s′ be a

winning state in Gp. As P2 has less choices in both Gτp and GRp , clearly s′ is still

winning in those games. If an epSCT in either of them (which are guaranteed to

exist and have depth bounded by 2r · h(W, |S|, k) by hypothesis) do not contain

the state s, then the claim is verified. Now suppose we have two epSCTs for

games Gτp and GRp such that they both contain state s. Notice that s is winning

in those two games and as such, is the root of two respective epSCTs of depth

less than 2r · h(W, |S|, k). Applying (i) on states s′ and s, we get an epSCT for

s′ in Gp of depth 2 · 2r · h(W, |S|, k), which concludes the proof.

From multi energy parity games to multi energy games. Let Gp be a

MEPG and assume that P1 has a winning strategy in that game. By Lemma 5.4,



78 Chapter 5 – Memory in Multi Energy Parity Games

there exists an epSCT whose depth is bounded by l. As a direct consequence

of that bounded depth, we have that P1, by playing the strategy prescribed by

the epSCT, enforces a stronger objective than the parity objective. Namely, this

strategy ensures to “never visit more than l states of odd priorities before seeing

a smaller even priority” (which is a safety objective). Then, the parity condition

can be transformed into additional energy dimensions.

While our transformation shares ideas with the classical transformation of

parity objectives into safety objectives, first proposed in [BJW02] (look also

at [DR11, Lemma 6.4]), it is technically different because energy levels cannot

be reset (as it would be required by those classical constructions). The reduction

is as follows. For each odd priority, we add one dimension. The energy level in

this dimension is decreased by 1 each time this odd priority is visited, and it

is increased by l each time a smaller even priority is visited. If P1 is able to

maintain the energy level positive for all dimensions (for a given initial energy

level), then he is clearly winning the original parity objective; on the other hand,

an epSCT strategy that wins the original objective also wins the new game.

Lemma 5.5. Let Gp = (S1, S2, E, k, w, p) be a multi energy parity game with

priorities in {0, 1, . . . , 2 ·m}, such that W is the maximal absolute weight on an

edge. Then we can construct a multi energy game G with the same set of states,

(k + m) dimensions and a maximal absolute weight bounded by l, as defined by

Lemma 5.4, such that P1 has a winning strategy in G iff he has one in Gp.

Proof. Let Gp = (S1, S2, E, k, w, p) be a MEPG with priorities in {0, 1, . . . , 2·m}.
Let G = (S1, S2, E, (k +m), w′) be the multi energy game (MEG) obtained by

applying the following transformation: ∀ (s, t) ∈ E, ∀ 1 ≤ j ≤ k, w′((s, t))(j) =

w((s, t))(j), and (a) if p(t) is even, ∀ k < j ≤ k + p(t)
2 , w′((s, t))(j) = 0 and

∀ k + p(t)
2 < j ≤ k +m, w′((s, t))(j) = l, or (b) if p(t) is odd, ∀ k < j ≤ k +m,

j 6= k +
⌈
p(t)

2

⌉
, w′((s, t))(j) = 0 and w′((s, t))(k +

⌈
p(t)

2

⌉
) = −1. We have to

prove both ways of the equivalence.

First, suppose λ1 ∈ ΛPF1 is a winning strategy for P1 in the MEPG Gp. By

Lemma 5.4, there is an epSCT of depth at most l for initial state sinit ∈ S. Thus,

we know that in every repeated sequence of l states, the minimal visited priority

will be even. Therefore, for all additional dimensions, ranging from k+1 to k+m,

the effect of a sequence of l states will be bounded from below by −1 · (l− 1) + l,
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which is positive. Thus strategy λ1 is also winning in G (with initial credit

bounded by l on additional dimensions).

Second, suppose λ1 ∈ ΛPF1 is a winning strategy for P1 in the MEG G, as

defined above. Since λ1 is winning, it yields an SCT (epSCT without the parity

condition) of bounded depth such that P1 is able to enforce positive energy cycles.

By definition of weights over G, this cannot be the case if the minimal priority

infinitely often visited is odd. Thus this strategy is winning for parity on Gp, and

stays winning for energy over dimensions 1 to k as weights are unchanged.

Bounding the width. Thanks to Lemma 5.5, we continue with multi energy

games without parity. In order to bound the overall size of memory for winning

strategies, we consider the width of self-covering trees. The following lemma

states that SCTs, whose width is at most doubly exponential by application of

Lemma 5.4, can be compressed into directed acyclic graphs (DAGs) of single

exponential width. Thus we eliminate the second exponential blow-up and give

an overall single exponential bound for memory of winning strategies.

Lemma 5.6. Let G = (S1, S2, E, k, w) be a multi energy game such that W is

the maximal absolute weight appearing on an edge and d the branching degree

of G. Suppose there exists a finite-memory winning strategy for P1. Then, there

exists λD1 ∈ ΛPF1 a winning strategy for P1 described by a DAG D of depth at

most l = 2(d−1)·|S| · (W · |S|+ 1)c·k
2

and width at most L = |S| · (2 · l ·W + 1)k,

where c is a constant independent of G. Thus the overall memory needed to win

this game is bounded by the single exponential l · L.

The sketch of this proof is the following. By Lemma 5.4, we know that

there exists a tree T , and thus a DAG, that satisfies the bound on depth. We

construct a finite sequence of DAGs, whose first element is T , so that (1) each

DAG describes a winning strategy for the same initial credit, (2) each DAG has

the same depth, and (3) the last DAG of the sequence has its width bounded by

|S| · (2 · l ·W + 1)k. This sequence D0 = T,D1, D2, . . . , Dn is built by merging

nodes on the same level of the initial tree depending on their labels, level by level.

The key idea of this procedure is that what actually matters for P1 is only the

current energy level, which is encoded in node labels in the self-covering tree T .

Therefore, we merge nodes with identical states and energy levels: since P1



80 Chapter 5 – Memory in Multi Energy Parity Games

can essentially play the same strategy in both nodes, we only keep one of their

subtrees.

It is possible to further reduce the practical size of the compressed resulting

DAG by merging nodes according to a “greater or equal” relation over energy

levels rather than simply equality (Fig. 5.2). This improvement is part of the

algorithm that follows, and it has a significant impact on the practical width of

DAGs as it can then be bounded by the number of incomparable labeling vectors

instead of unequivalent ones.

〈s0, (0, 0)〉

〈s1, (−1, 1)〉 〈s2, (0, 2)〉

〈s3, (−1, 2)〉 〈s3, (0, 2)〉

〈s4, (0, 1)〉 〈s5, (−2, 3)〉

〈s0, (0, 0)〉 〈s3, (0, 3)〉

Figure 5.2: Merge between comparable
nodes.

r

ϑ

ν

ς
ξ

Figure 5.3: Cycles have positive en-
ergy levels.

The remainder of this section is dedicated to the proof of Lemma 5.6. We

need to introduce some notations and two intermediate lemmas. If he so wishes,

the reader may directly proceed to the Sect. 5.2 and Lemma 5.9 for results on

lower memory bounds.

We first introduce some notations. Let T = (Q,R) be a self-covering tree (i.e.,

epSCT without the parity condition). We define the partial order � on Q such

that for all ς1, ς2 ∈ Q such that Θ(ς1) = 〈t1, u1〉 and Θ(ς2) = 〈t2, u2〉, we have

ς1 � ς2 iff t1 = t2 and u1 ≤ u2. We denote the equivalence by ' such that ς1 ' ς2
iff ς1 � ς2 and ς2 � ς1. For all ς ∈ Q, let Anc and EnAnc resp. denote the set

of ancestors and energy ancestors of ς in T : Anc(ς) = {ϑ ∈ Q \ {ς} | ϑ � ∃♦ς},
where we use the classical CTL notation [CE81] to denote that there exists a
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path from ϑ to ς in T , and EnAnc(ς) = {ϑ ∈ Anc(ς) | ϑ � ς}.
We build a sequence of DAGs (Di)0≤i≤n ≡ D0 = T,D1, D2, . . . , Dn such that

for all 0 < i ≤ n, Di is obtained from Di−1 by merging two equivalent nodes of

the same minimal level (i.e., closest to the root) of Di−1. The sequence stops

when we obtain a DAG Dn = (Qn, Rn) such that for all level j of Dn, there does

not exist two distinct equivalent nodes on level j. This construction induces

merges by increasing depth, starting with level one. Moreover, if a DAG Di of

the sequence is the result on merges up to level j, then it has the tree property

(i.e., every node has a unique father) for levels greater than j. As the depth and

the branching degree of T are finite, the defined sequence of DAGs is finite (and

actually bounded).

Let us give a formal definition of the merge operation. Consider such a DAG

Di = (Qi, Ri). Let j the minimal level of Di that contains two equivalent nodes.

Let ς1, ς2 ∈ Qi(j) (i.e., nodes of level j) be two nodes such that ς1 6= ς2 and

ς1 ' ς2. We suppose w.l.o.g. an arbitrary order on nodes of the same level

so that ς1, ς2 are the two leftmost nodes that satisfy this condition. We define

Di+1 = (Qi+1, Ri+1) = merge(Di) as the result of the following transformation:

◦ Qi+1 = Qi \ ({ς2} ∪ {ςd ∈ Qi | ς2 ∈ Anc(ςd)}),

◦ Ri+1 = (Ri ∩ (Qi+1 ×Qi+1)) ∪ {(ϑ, ς1) | (ϑ, ς2) ∈ Ri}.

Thus, we eliminate the subtree starting in ς2 and replace all edges that point to

ς2 by edges pointing to ς1. This follows the idea that the same strategy can be

played in ς2 as in ς1 since the present state and the energy level are the same.

Let Di = (Qi, Ri) be a DAG of the sequence (Di)0≤i≤n. Given ς ∈ Qi,

ϑ ∈ Anc(ς), we denote by ϑ ς an arbitrary downward path from ϑ to ς in Di.

Given a leaf ς ∈ Qi, we denote its oldest energy ancestor by oea(ς). Recall that

a strategy is described by such a DAG according to moves of a pebble. Given a

leaf ς ∈ Qi and one of its energy ancestors ϑ ∈ EnAnc(ς), we represent the pebble

going up from ς to ϑ by ς 	 ϑ. Given α, β ∈ (Qi)
∗, α 	 β naturally extends

this notation such that we have Last(α) 	 First(β). We consider energy levels of

paths in the tree by refering to their counterparts in the game. Note that given

ϑ, ς ∈ Qi, Θ(ϑ) = 〈t, u〉, Θ(ς) = 〈t′, u′〉, we have EL(ϑ  ς) = u′ − u. We start

with two useful lemmas.
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Lemma 5.7. Let Di = (Qi, Ri) be a DAG of (Di)0≤i≤n. For all nodes ς1, ς2 ∈ Qi
such that ς1 ' ς2, we have that ∀ϑ ∈ Anc(ς1)∩Anc(ς2), EL(ϑ ς1) = EL(ϑ ς2).

Proof. The proof is straightforward.

Lemma 5.8. Let Di = (Qi, Ri) be a DAG of (Di)0≤i≤n. Let ς, ϑ, ν, ξ ∈ Qi be four

nodes such that ς and ξ are leafs, ν is the deepest common ancestor of ς and ξ,

and ϑ is an ancestor of ν. Let the oldest energy ancestor of ξ be an ancestor of ς,

i.e., oea(ξ) ∈ Anc(ς). We have that EL(ϑ ς) ≤ EL(ϑ ν  ξ 	 oea(ξ) ς).

This lemma states that we can extract pebble cycles, which have positive

energy levels, from a given path, in order to obtain some canonical path whose

energy level is lower or equal (Fig. 5.3).

Proof. Let χ = oea(ξ) and ρ = ϑ ν  ξ 	 χ ς. Since χ ∈ Anc(ς) ∩ Anc(ξ),

we have χ ∈ Anc(ν) ∪ {ν}. Therefore, and applying Lemma 5.7, four cases are

possible: χ ∈ Anc(ϑ), χ = ϑ, χ ∈ Anc(ν) \ (Anc(ϑ) ∪ {ϑ}), and χ = ν. Consider

the first case, χ ∈ Anc(ϑ). Then ρ = ϑ  ν  ξ 	 χ  ϑ  ν  ς. We have

EL(ρ) = EL(ϑ  ν) + EL(ν  ξ) + EL(χ  ϑ) + EL(ϑ  ν) + EL(ν  ς) =

EL(χ  ϑ  ν  ξ) + EL(ϑ  ς). By definition of χ = oea(ξ), the first term

is positive. Thus, EL(ρ) ≥ EL(ϑ  ς). Arguments are similar for the other

cases.

We proceed with the proof of Lemma 5.6.

Proof of Lemma 5.6. Let (Di)0≤i≤n be the sequence of DAGs defined above. We

claim that (i) each DAG describes a winning strategy for the same initial credit,

(ii) each DAG has the same depth l, and (iii) the last DAG of the sequence has

its width bounded by |S| · (2 · l ·W + 1)k.

(i) First, recall that P1 can play a strategy λT1 ∈ ΛPF1 based on edges taken

by a pebble on T . Notice that moving the pebble as we previously defined is

possible because nodes belonging to P1 have only one child, and nodes of P2

have childs covering all his choices once, and only once. Fortunately, the merge

operation maintains this property. Therefore, it is straightforward to see that P1

can also play a strategy λDi1 ∈ ΛPF1 for a DAG Di resulting of some merges on T .

However, while this would be a valid strategy for P1, we have to prove that it is
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still a winning one, for the same initial credit v0 as λT1 . Precisely, we claim that

∀ i ≥ 0, we have that λDi1 is winning for v0.

We show it by induction on Di. The base case is trivial as D0 = T : the

strategy λT1 is winning for v0 by definition. Our induction hypothesis is that

our claim is valid for Di−1, and we now prove it for Di, by contradiction. Let

ς1, ς2 ∈ Qi−1(j) be the merged nodes, for some level j of Di−1. Suppose λDi1 is

not winning for v0. Thus there exists a finite path ζ of the pebble in Di, which

corresponds to a strategy λDi2 ∈ ΛPF2 of P2, such that it achieves a negative value

on at least one dimension m, 1 ≤ m ≤ k. We have that (v0 + EL(ζ)) (m) < 0.

We aim to find a similar path η in Di−1 such that EL(η) ≤ EL(ζ), thus yielding

contradiction, as it would witness that λ
Di−1

1 is not winning for v0.

We denote by ςm the father of ς2 in Di−1. The only edge added by the merge

operation is (ςm, ς1). Obviously, if ζ does not involve this edge, then we can

take η = ζ and immediately obtain contradiction. Thus, we can decompose the

witness path

ζ = α(1) ςmς1 β(1) 	 α(2) ςmς1 β(2) 	 . . . 	 α(q) ςmς1 ξ,

for some q ≥ 1 such that for all 1 ≤ p ≤ q, we have that

◦ α(p), β(p), ξ ∈ (Qi ∪ {	})∗ are valid paths of the pebble in Di (and Di−1);

◦ they do not involve edge (ςm, ς1), i.e., {ςmς1} 6⊆ α(p), β(p), ξ;

◦ β(p)∩
(
AncDi(ςm) \ AncDi−1(ς1)

)
= ∅, Last(β(p)) is a leaf and it is the case

that oea(Last(β(p))) ∈ AncDi(ςm).

Intuitively, ζ is split into several parts in regard to q, the number of times

it takes the added edge (ςm, ς1). Each time, this transition is preceded by some

path α. It is then followed by some path β where all visited ancestors of ςm were

already ancestors of ς1 in Di−1 (thus, β paths can be kept in η). Finally, after

the q-th transition ςmς1 is taken, the path ζ ends with a finite sub-path ξ.

We define the witness path η in Di−1 as η = κ(1)β(1) 	 κ(2)β(2) 	 . . . 	

κ(q)ξ, with the following transformation of sub-paths α(p) ςmς1:

◦ κ(1) = r  Di−1 ς1,

◦ ∀ 2 ≤ p ≤ q, κ(p) = oea(Last(β(p− 1))) Di−1 ς1,
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where Di−1 denotes a valid path in Di−1. Note that given preceding definitions,

this indeed constitutes a valid path in Di−1. We have to prove that EL(η) ≤
EL(ζ). We have

EL(η) =
∑

1≤p≤q
EL(κ(p)) +

∑
1≤p≤q−1

EL(β(p)) + EL(ξ),

and

EL(ζ) =
∑

1≤p≤q
EL(α(p) ςmς1) +

∑
1≤p≤q−1

EL(β(p)) + EL(ξ).

Thus, it remains to show that∑
1≤p≤q

EL(κ(p)) ≤
∑

1≤p≤q
EL(α(p) ςmς1).

In particular, we claim that for all 1 ≤ p ≤ q, EL(κ(p)) ≤ EL(α(p) ςmς1).

Indeed, notice that κ(p) and α(p) share their starting and ending nodes and that

α(p) contains a finite number of pebble cycles. Let ϑ denote the common starting

node of both κ(p) and α(p). Applying Lemma 5.8 on α(p), we can eliminate

cycles one at a time, without ever increasing the energy level, and obtain a path

ϑ  Di ςmς1 such that EL(ϑ  Di ςmς1) ≤ EL(α(p) ςmς1). Since ς1 ' ς2, we have

by Lemma 5.7 that EL(ϑ  Di ςmς1) = EL(ϑ  Di−1 ςmς2) = EL(ϑ  Di−1 ς1),

implying the claim.

Consequently, we obtain EL(η) ≤ EL(ζ), which witnesses that Di−1 was not

winning. This contradicts our induction hypothesis and concludes our proof that

for all 0 ≤ i ≤ n, λDi1 is winning for v0.

(ii) Second, the merge operation only prunes some parts of the tree T , without

ever adding any new state, and added edges are on existing successive levels.

Therefore, each Di has noticeably the same depth l.

(iii) Third, the last DAG of the sequence, Dn, is such that for all level j,

for all ς1, ς2 ∈ Qn(j), we have (ς1 6= ς2) ⇒ (ς1 6' ς2). Therefore the width of

this DAG is bounded by the number of possible non-equivalent nodes. Recall

that two nodes are equivalent if they have the same labels, i.e., they represent

the same state of the game and are marked with exactly the same energy level

vector. Since the maximal change in energy level on an edge is W , and the depth

of the DAG is bounded by l = 2(d−1)·|S| · (W · |S|+ 1)c·k
2

thanks to Lemma 5.4,
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we have possible vectors in {−l ·W,−l ·W + 1, . . . , l ·W − 1, l ·W}k for each

state. Consequently, the width of Dn is bounded by

|S| · (2 · l ·W + 1)k = |S| ·
(

2d·|S| · (W · |S|+ 1)c·k
2

·W + 1
)k
,

which is still single exponential.

5.2 Single Exponential Lower Bound

In the next lemma, we show that the upper bound is tight in the sense that

there exist families of games which require exponential memory (in the number

of dimensions), even for the simpler case of multi energy objectives without parity

and weights in {−1, 0, 1} (Fig. 5.4). Note that for one-dimension energy parity,

it was shown in [CD12] that exponential memory (in the encoding of weights)

may be necessary (cf. Sect. 4.3.3).

s1

s1,L

s1,R

sK

sK,L

sK,R

t1

t1,L

t1,R

tK

tK,L

tK,R

Figure 5.4: Family of games requiring exponential memory.

Lemma 5.9. There exists a family of multi energy games (G(K))K≥1 = (S1, S2,

E, k = 2 ·K,w : E → {−1, 0, 1}k
)

such that for any initial credit, P1 needs ex-

ponential memory to win.

The idea is the following: in the example of Fig. 5.4, if P1 does not remember

the exact choices of P2 (which requires an exponential size Moore machine),
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there will exist some sequence of choices of P2 such that P1 cannot counteract a

decrease in energy. Thus, by playing this sequence long enough, P2 can force P1

to lose, whatever his initial credit is.

Proof. We define a family of games (G(K))K≥1 which is an assembly of k = 2 ·K
gadgets, the first K belonging to P2, and the remaining K belonging to P1

(Fig. 5.4). Precisely, we have |S1| = |S2| = 3 ·K, |S| = |E| = 6 ·K = 3 · k (linear

in k), k = 2 ·K, and w defined as:

∀ 1 ≤ i ≤ K,w((◦, si)) = w((◦, ti)) = (0, . . . , 0),

w((si, si,L)) = −w((si, si,R)) = w((ti, ti,L)) = −w((ti, ti,R)),

∀ 1 ≤ j ≤ k, w((si, si,L))(j) =


1 if j = 2 · i− 1

−1 if j = 2 · i

0 otherwise

,

where ◦ denotes any valid predecessor state.

There exists a winning strategy λexp1 for P1, for initial credit vexp0 = (1, . . . , 1).

Indeed, for any strategy of P2, for any state ti belonging to P1, it suffices to play

the opposite choice as P2 made on its last visit of si to maintain at all times an

energy vector which is positive on all dimensions. This strategy thus requires

to remember the last choice of P2 in all gadgets, which means P1 needs K

bits to encode these decisions. Thus, this winning strategy is described by a

Moore machine containing 2K = 2
k
2 states, which is exponential in the number

of dimensions k.

We claim that, for any initial credit v0, there exists no winning strategy λ1

that can be described with less than 2K states and prove it by contradiction.

Suppose P1 plays according to such a strategy λ1. Then there exists some

1 ≤ x ≤ K such that λ1(s1 . . . sxsx,L . . . tx) = λ1(s1 . . . sxsx,D . . . tx), i.e., P1

chooses the same action in tx against both choices of the adversary. Suppose

that P1 chooses to play tx,L in both cases, that is λ1(s1 . . . sxsx,L . . . tx) =

λ1(s1 . . . sxsx,D . . . tx) = tx,L. By playing sx,L, P2 can force a decrease of the

energy vector by 2 on dimension 2 · x every visit in gadget x. Similarly, if the

strategy of P1 is to play tx,R, P2 wins by choosing to play sx,R as dimension

2 · x− 1 decreases by 2 every visit. Therefore, whatever the finite initial vector
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of P1, P2 can enforce a negative dimension by playing long enough. This con-

tradicts the fact that λ1 is winning and concludes our proof that exponential

memory is necessary for this simple family of games (G(K))K≥1.

5.3 Wrap-up

We summarize our results on memory bounds in Theorem 5.10.

Theorem 5.10 (Optimal memory bounds). The following assertions hold:

(1) In multi energy parity games, if there exists a winning strategy, then there

exists a finite-memory winning strategy. (2) In multi energy parity and multi

mean-payoff games, if there exists a finite-memory winning strategy, then there

exists a winning strategy with at most exponential memory. (3) There exists a

family of multi energy games (without parity) with weights in {−1, 0, 1} where

all winning strategies require at least exponential memory.

Proof. Thanks to Lemma 4.10, we have equivalence between finite-memory win-

ning for multi energy and multi mean-payoff games. The rest follows from

straigthforward application of Lemma 5.1, Lemma 5.5, Lemma 5.6, and finally

Lemma 5.9.

Remark 5.11. We do not distinguish infimum and supremum variants of the

mean-payoff objective in this context as they coincide for finite-memory strate-

gies, as discussed in Sect. 4.3. C





CHAPTER 6
Symbolic Synthesis Algorithm

Algorithm � Correctness and Completeness � Applicability

We present a symbolic algorithm (in the sense of [DR10], i.e., using a compact

antichain representation of sets by their minimal elements) to compute a finite-

memory winning strategy, if one exists, for multi energy parity games.

Our algorithm is parameterized by the range of energy levels to consider

during its execution. So, we can use it in an incremental approach: first, we

search for finite-memory winning strategies within a small range, and increment

the range only when necessary. We also establish a bound on the maximal range

to consider which ensures completeness of the incremental approach.

In the worst case the algorithm requires exponential time. Since exponential

size memory is required (and the decision problem is coNP-complete), the worst

case exponential bound can be considered as optimal. Moreover, as our algorithm

is symbolic and incremental, in most relevant problems in practice, it is expected

to be efficient. We mention an implementation by Bohy et al. [BBFR13].

Our algorithm was developed and presented in joint work with Chatterjee

and Raskin [CRR12a,CRR12b,CRR14].
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6.1 Algorithm

We present a symbolic, incremental and optimal algorithm to synthesize a finite-

memory winning strategy in a MEG.1 This algorithm outputs a (set of) winning

initial credit(s) and a derived finite-memory winning strategy (if one exists)

which is exponential in the worst-case. Its running time is at most exponential.

So our symbolic algorithm can be considered (worst-case) optimal in the light of

the results of Chap. 5.

This algorithm computes the greatest fixed point of a monotone operator

that defines the sets of winning initial (vectors of) credits for each state of the

game. As those sets are upward-closed, they are symbolically represented by their

minimal elements. To ensure convergence, the algorithm considers only credits

that are below some threshold, noted C. This is without giving up completeness

because, as we show in the following, for a game G = (S1, S2, E, k, w), it is

sufficient to take the value 2 · l ·W for C, where l is the bound on the depth of

epSCTs obtained in Lemma 5.4 and W is the largest absolute value of weights

used in the game. We also show how to extract a deterministic output Moore

machine representing a corresponding winning strategy from this set of minimal

winning initial credits and how to obtain an incremental algorithm by increasing

values for the threshold C starting from small values.

A controllable predecessor operator. Let G = (S1, S2, E, k, w) be a MEG,

C ∈ N be a constant, and U(C) be the set (S1 ∪ S2) × {0, 1, . . . ,C}k. Let

U(C) = 2U(C), i.e., the powerset of U(C), and the operator CpreC : U(C)→ U(C)

be defined as follows:

E(V ) = {(s1, e1) ∈ U(C) | s1 ∈ S1 ∧ ∃ (s1, s) ∈ E,∃ (s, e2) ∈ V :

e2 ≤ e1 + w(s1, s)},
A(V ) = {(s2, e2) ∈ U(C) | s2 ∈ S2 ∧ ∀ (s2, s) ∈ E,∃ (s, e1) ∈ V :

e1 ≤ e2 + w(s2, s)},

CpreC(V ) = E(V ) ∪ A(V ). (6.1)

1Note that the symbolic algorithm can be applied to MEPGs and MMPPGs after removal
of the parity condition by applying the construction of Lemma 5.5.
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Intuitively, CpreC(V ) returns the set of energy levels from which P1 can force an

energy level in V in one step.

Example 6.1. We illustrate the execution of operator CpreC on a two-dimension

game in Fig. 6.1. We consider the aggregation of winning credits on state s (sets

in red), assuming the sets of winning credits for successor states s′ (sets in blue)

and s′′ (sets in orange) are already known. It is assumed that edges from s have

weight zero for the sake of readability.

If s belongs to P1, then he can choose the most profitable situation for him.

Hence, we take the union of the sets of winning credits for s′ and s′′. If s

belongs to P2, then P1 must be able to win from both state s′ and state s′′.

Indeed, he cannot predict which one will be chosen by P2. Therefore, we take

the intersection of the sets. Observe that given a state, the corresponding set of

winning credits is a union of upper closed sets. This union can be represented

efficiently by the minimal elements of these upper closed sets, as discussed in the

following.

The green lines represent the upper bound C that encloses the space of con-

sidered winning credits. This bound guarantees convergence of the fixed point

computation that is the core of our algorithm. C

The operator CpreC is ⊆-monotone over the complete lattice U(C), and so

there exists a greatest fixed point for CpreC in the lattice U(C), denoted by Cpre∗C.

As usual, the greatest fixed point of the operator CpreC can be computed by

successive approximations as the last element of the following finite ⊆-descending

chain. We define the algorithm CpreFP that computes this greatest fixed point:

U0 = U(C), U1 = CpreC(U0), . . . , Un = CpreC(Un−1) = Un−1. (6.2)

The set Ui contains all the energy levels that are sufficient to maintain the energy

positive in all dimensions for i steps. Note that the length of this chain can be

bounded by |U(C)| and the time needed to compute each element of the chain

can be bounded by a polynomial in |U(C)|. As a consequence, we obtain the

following lemma.

Lemma 6.2. Let G = (S1, S2, E, k, w) be a multi energy game and C ∈ N be

a constant. Then Cpre∗C can be computed in time bounded by a polynomial in

|U(C)|, i.e., an exponential in the size of G.
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C

C

s

s′

s′′

C

C

s

s′

s′′

C

C

s

s′

s′′

Figure 6.1: Aggregation of winning credits by application of operator CpreC,
depending on the state possessor.

Symbolic representation. To define a symbolic representation of the sets

manipulated by the CpreC operator, we exploit the following partial order: let

(s, e), (s′, e′) ∈ U(C), we define

(s, e) � (s′, e′) iff s = s′ and e ≤ e′.
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A set V ∈ U(C) is closed if for all (s, e), (s′, e′) ∈ U(C), if (s, e) ∈ V and

(s, e) � (s′, e′), then (s′, e′) ∈ V . By definition of CpreC, we get the following

property.

Lemma 6.3. All sets Ui in eq. (6.2) are closed for �.

Therefore, all sets Ui in the descending chain of eq. (6.2) can be symboli-

cally represented by their minimal elements Min�(Ui) which is an antichain of

elements for �. Even if the largest antichain can be exponential in G, this rep-

resentation is, in practice, often much more efficient, even for small values of the

parameters. For example, with C = 4 and k = 4, we have that the cardinality

of a set can be as large as |Ui| ≤ 625 whereas the size of the largest antichain is

bounded by |Min�(Ui)| ≤ 35. Antichains have proved to be very efficient data

structures for many applications: see for example [DDHR06, ACH+10, DR10],

or Ducobu’s [Duc13] and Maquet’s [Maq11] theses. Therefore, our algorithm is

expected to have good performance in practice.

6.2 Correctness and Completeness

The following two lemmas relate the greatest fixed point Cpre∗C and the exis-

tence of winning strategies for P1 in a multi energy game G. We start with the

correctness of the symbolic algorithm.

Lemma 6.4 (Correctness). Let G = (S1, S2, E, k, w) be a multi energy game,

sinit ∈ S an initial state, and C ∈ N a constant. If there exists (c1, . . . , ck) ∈ Nk

such that (sinit, (c1, . . . , ck)) ∈ Cpre∗C, then P1 has a winning strategy in G for

initial credit (c1, . . . , ck) and the memory of P1 can be bounded by |Min�(Cpre∗C)|
(the size of the antichain of minimal elements in the fixed point).

Given the set of winning initial credits output by CpreFP, it is straight-

forward to derive a corresponding winning strategy of at most exponential size.

Indeed, for winning initial credit c ∈ Nk, we build a deterministic output Moore

machine which (i) states are the minimal elements of the fixed point (antichain

at most exponential in G), (ii) initial state is any element (t, u) among them such

that t = sinit and u ≤ c, (iii) update function maintains an accurate energy level

in the memory, and (iv) next-action function prescribes an action that ensures

remaining in the fixed point.
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Proof. We denote by c the k-dimension credit vector (c1, . . . , ck). W.l.o.g. we

assume that states of G alternate between positions of P1 and positions of P2

(otherwise, we split needed edges by introducing dummy states). From Cpre∗C, we

construct a deterministic output Moore machine M = (Mem,m0, αu, αn) which

respects the following definitions:2

◦ Mem = Min�{(t, u) ∈ S1 × {0 . . .C}k | (t, u) ∈ (Cpre∗C)}. The set of states

of the machine is the antichain of �-minimal elements that belong to P1

in the fixed point. Note that the length of this antichain is bounded by an

exponential in the size of the game.

◦ m0 is any element (t, u) in Mem such that t = sinit and u ≤ c. Note that

such an element is guaranteed to exist as (sinit, c) ∈ Cpre∗C.

◦ For all (t, u) ∈ Mem, we define αn((t, u)) by choosing any element (t, t′) ∈ E
such that there exists (t′, u′) ∈ Cpre∗C with u′ = u+w(t, t′). Such an element

is guaranteed to exist by definition of CpreC and the fact that (t, u) ∈ Cpre∗C.

◦ αu : Mem× ((S2×S)∩E)→ Mem is any partial function that respects the

following constraint: if αn((t, u)) = (t, t′) then αu((t, u), (t′, t′′)) is defined

for any (t′, t′′) ∈ E and can be chosen to be equal to any (t′′, u′′) such

that u′′ ≤ u+ w(t, t′) + w(t′, t′′), and such an u′′ is guaranteed to exist by

definition of CpreC and because Cpre∗C is a fixed point.

Now, let us prove that for any initial prefix s0s1 . . . s2n of even length in G,

which is compatible with M, we have that c + EL(s0s1 . . . s2n−1) ≥ 0 and that

c + EL(s0s1 . . . s2n) ≥ 0. To establish this property, we first prove the following

property by induction on n: c+EL(s0s1 . . . s2n) ≥ u where u is the energy level of

the label of the state reached after reading the prefix s0s1 . . . s2n with the Moore

machine M. Base case n = 0 is trivial. Induction: assume that the property is

true for n − 1, and let us establish it for n. By induction hypothesis, we have

that c+ EL(s0s1 . . . s2(n−1)) ≥ u where u is the energy level of the label of state

m that is reached after reading s0s1 . . . s2(n−1) with the Moore machine. Now,

assume that αn(m) = (t, t′). So, s2(n−1) = t and the choice of P1 is to play

(t, t′). So, s2(n−1)+1 = t′. Now for all possible choices (t′, t′′) of P2, we know

by definition of M that the energy level u′′ that labels the state αu(m, (t′, t′′))

2We slightly differ from the usual notation to ease up the definition.
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is u′′ ≤ u + w(t, t′) + w(t′, t′′), which establishes our property. Therefore, the

strategy of P1 based onM is such that the energy always stays positive for initial

credit c, which concludes the proof.

Completeness of the symbolic algorithm is guaranteed when a sufficiently

large threshold C is used as established in the following lemma.

Lemma 6.5 (Completeness). Let G = (S1, S2, E, k, w) be a multi energy game

in which all absolute values of weights are bounded by W . If P1 has a winning

strategy in G from initial state sinit ∈ S and T = (Q,R) is a self-covering tree

for G of depth l, then (sinit, (C, . . . ,C)) ∈ Cpre∗C for C = 2 · l ·W .

Remark 6.6. This algorithm is complete in the sense that if a winning strategy

exists for P1, it outputs at least a winning initial credit (and the derived strategy)

for C = 2 · l ·W . However, this is different from the fixed initial credit problem,

which consists in deciding if a particular given credit vector is winning and is

known to be EXPSPACE-hard by equivalence with deciding the existence of an

infinite run in a Petri net given an initial marking [BJK10,FJLS11]. In general,

there may exist winning credits that are incomparable to those captured by

algorithm CpreFP.

More precisely, given a constant C ∈ N, the algorithm fully captures all the

winning initial credits smaller than (C, . . . ,C). Indeed, the fixed point computa-

tion considers the whole range of initial credits up to the given constant exhaus-

tively, and only removes credits if they do not suffice to win. By Lemma 6.5,

it is moreover guaranteed that if an arbitrary winning initial credit exists, then

there exists one in the range defined by the constant C = 2 · l ·W .

Nevertheless, since our algorithm works in exponential time while the prob-

lem of finding all the winning initial credits is EXPSPACE-hard, there may be

some incomparable credits outside that range that are not captured by the algo-

rithm (comparable credits are captured since we work with upper closed sets).

Indeed, if our algorithm was able to compute exhaustively all winning credits

in exponential time, this would induce that EXPTIME is equal to EXPSPACE.

Notice that defining a class of games for which the algorithm CpreFP proves to

be incomplete (in the sense that incomparable winning credits exist outside the

region captured by constant C = 2 · l ·W ) is an interesting open problem.
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Besides, computation of the Pareto frontier (i.e., complete representation of

all incomparable winning credits) was addressed by Abdulla et al. [AMSS13],

partly based on our results. They show that this frontier is decidable, but com-

plexity is left open. No lower bound is known other than the EXPSPACE-

hardness already valid for the simpler fixed initial credit problem. C

Proof. To establish this property, we first prove that from the set of labels

of T , we can construct a set f which is increasing for the operator CpreC, i.e.,

CpreC(f) ⊇ f , and such that (sinit, (C, . . . ,C)) ∈ f . We define f from T = (Q,R)

as follows. Let C ∈ N be the smallest non-negative integer such that for all q ∈ Q,

with Θ(q) = (t, u), for all dimensions i, 1 ≤ i ≤ k, we have that u(i) + C ≥ 0.

Integer C is bounded from above by l ·W because on every path from the root to

a leaf in T , every dimension is at most decreased l times by an amount bounded

by W , and at the root all the dimensions are equal to 0. For any q ∈ Q, we

denote by Θ(q)+C the label of q where the energy level has been increased by C

in all the dimensions, i.e., if Θ(q) = (t, u) then Θ(q) + C = (t, u + (C, . . . , C)).

Note that for all nodes in Q, the label is at most l ·W and thus the shifted label

remains under C = 2 · l ·W . Now, we define the set f as follows:

f = {(t, u) ∈ U(C) | ∃ q ∈ Q, Θ(q) + C � (t, u)}.

So, f is defined as the �-closure of the set of labels in T shifted by C in all the

dimensions.

First, note that (sinit, (C, . . . ,C)) ∈ f because the label of the root in T is

(sinit, (0, . . . , 0)). Second, let us show that CpreC(f) ⊇ f . Take any (t, u) ∈ f

and let us show that (t, u) ∈ CpreC(f). We decompose the proof in two cases.

Case (A) t ∈ S1. By definition of f , there exists q ∈ Q such that Θ(q) +C �
(t, u). W.l.o.g. we can assume that q is not a leaf as otherwise there exists an

ancestor q′ of q such that Θ(q′) � Θ(q) (recall the set is described by its minimal

elements). By definition of T , there exists (t, t′) ∈ E and q′ ∈ Q such that

(q, q′) ∈ R and Θ(q′) = Θ(q) + w(t, t′). Let (t′, v) = Θ(q′) + C. By definition

of f , we have (t′, v) ∈ f . By eq. (6.1), it follows that (t, u) ∈ CpreC(f).

Case (B) t ∈ S2. By definition of f , there exists q ∈ Q such that Θ(q) +C �
(t, u). Again, w.l.o.g. we can assume that q is not a leaf as otherwise there

exists an ancestor q′ of q such that Θ(q′) � Θ(q). By definition of T , for all
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(t, t′) ∈ E, there is q′ ∈ Q such that (q, q′) ∈ R and Θ(q′) = Θ(q) + w(t, t′). Let

(t′, v) = Θ(q′)+C. By definition of f , we have (t′, v) ∈ f . By eq. (6.1), it follows

that (t, u) ∈ CpreC(f).

Now, let us show that f ⊆ Cpre∗C. This is a direct consequence of the mono-

tonicity of CpreC: it is well known that for any monotone function on a complete

lattice, its greatest fixed point is equal to the least upper bound of all post-fixed

points (points e such that e ⊆ CpreC(e)), i.e., Cpre∗C =
⋃
{e | e ⊆ CpreC(e)} ⊇ f .

As (sinit, (C, . . . ,C)) ∈ f , that concludes the proof.

Remark 6.7. The exponential bound on memory, obtained in Lemma 5.6, can also

be derived from the Moore machine construction of Lemma 6.4 as this method is

complete according to Lemma 6.5. Still, the DAG construction of Lemma 5.6 is

interesting in its own right, and introduces the concept of node merging, which

is a cornerstone of the symbolic algorithm correctness, while transparent in its

use. C

6.3 Applicability

Incrementality. While the threshold 2 · l ·W is sufficient, it may be the case

that P1 can win the game even if its energy level is bounded above by some

smaller value. So, in practice, we can use Lemma 6.4, to justify an incremental

algorithm that first starts with small values for the parameter C and stops as

soon as a winning strategy is found or when the value of C reaches the threshold

2 · l ·W and no winning strategy has been found.

Application of the symbolic algorithm to MEPGs and MMPGs. Using

the reduction of Lemma 5.5 that allows us to remove the parity condition, and the

equivalence between multi energy games and multi mean-payoff games for finite-

memory strategies (given by Lemma 4.10), along with Lemma 6.2 (complexity),

Lemma 6.4 (correctness) and Lemma 6.5 (completeness), we obtain the following

result.

Theorem 6.8 (Symbolic and incremental synthesis algorithm). Let Gp

be a multi energy (resp. multi mean-payoff) parity game and sinit an initial

state. Algorithm CpreFP is a symbolic and incremental algorithm that synthe-

sizes a winning strategy in Gp of at most exponential size memory, if a winning
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(resp. finite-memory winning) strategy exists. In the worst-case, the algorithm

CpreFP takes exponential time.

Proof. The correctness and completeness for algorithm CpreFP on multi energy

games are respectively given by Lemma 6.4 and Lemma 6.5. Extension to mean-

payoff games (under finite memory) is given by Lemma 4.10, whereas the parity

condition can be encoded as energy thanks to Lemma 5.5. Exponential worst-

case complexity of the algorithm CpreFP is induced by Lemma 6.2.

Integration in synthesis tools. Following our related publications [CRR12a,

CRR12b, CRR14], our results on strategy synthesis have been used in the syn-

thesis tool Acacia+. This tool originally handled the synthesis of controllers for

specifications expressed in LTL (Linear Temporal Logic, a classical formalism

for formal specifications [Pnu77]) using antichain-based algorithms [BBF+12]

and has recently been extended to the synthesis from LTL specifications with

mean-payoff objectives [BBFR13]. The addition of multi mean-payoff objectives

to LTL specifications provides a convenient way to enforce that synthesized con-

trollers also satisfy some reasonable behavior from a quantitative standpoint,

such as minimizing the number of unsollicited grants in a client-server architec-

ture with prioritized clients. Numerous practical applications may benefit from

this multi-dimension framework.

The authors present an approach in which the corresponding synthesis prob-

lem ultimately reduces to strategy synthesis on a multi energy game [BBFR13,

Theorem 26]. Their implementation uses fixed point computations similar to

eq. (6.2) and has proved efficient (considering the complexity of the problem) in

practice. It uses antichains to provide a compact representation of upper-closed

sets and implements the incremental approach proposed before (regarding the

constant C). In practical benchmarks, winning strategies can generally be found

for rather small values of C. Hence, the incremental approach overcomes the

need to compute up to the exponential theoretical bound C = 2 · l ·W in many

cases. Sample benchmarks and experiments can be found in [BBFR13], and the

tool can be used online.3

3http://lit2.ulb.ac.be/acaciaplus/

http://lit2.ulb.ac.be/acaciaplus/


CHAPTER 7
Trading Finite Memory for

Randomness

Introduction � Energy Games � Multi Mean-Payoff (Parity) Games � Single

Mean-Payoff Parity Games � Wrap-up

We consider several classes of multi-dimension quantitative games and study

when pure finite-memory strategies of P1 can be traded for conceptually much

simpler randomized memoryless strategies.

We show that for energy objectives, randomization is not helpful even with

only one player, as energy objectives are similar in spirit with safety objectives.

It is no more useful in two-player multi mean-payoff games.

However, randomized memoryless strategies suffice for one-player games with

multi mean-payoff parity objectives. For the important special case of mean-

payoff parity objectives (conjunction of a single mean-payoff objective and a

parity objective), we show that in two-player games, finite-memory strategies

can effectively be replaced by randomized memoryless strategies.

These results stem from collaboration with Chatterjee and Raskin [CRR12a,

CRR12b,CRR14].
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7.1 Introduction

We answer the fundamental question regarding the trade-off of memory for ran-

domness in strategies: we study on which kind of games P1 can replace a pure

finite-memory winning strategy by an equally powerful, yet conceptually simpler,

randomized memoryless one and discuss how memory is encoded into probabil-

ity distributions. We consider both expected value semantics and almost-sure

semantics.

Note that we do not consider wider strategy classes (e.g., randomized finite-

memory), nor do we allow randomization for P2 (which on most cases is dis-

pensable anyway). Indeed, we aim at a better understanding of the underlying

mechanics of memory and randomization, in order to provide alternative strat-

egy representations of practical use; not exploration of more complex games with

wider strategy classes (Lemma 7.12 shows a glimpse of it).

Multi energy
Multi MP (parity) MP parity

and energy parity

one-player ×
√ √

two-player × ×
√

Table 7.1: When pure finite memory for P1 can be traded for randomized mem-
orylessness.

We present an overview of our results in Tab. 7.1 and summarize them in

Theorem 7.11. Note that we do not consider the opposite implication, i.e., does

there always exist a way of encoding a randomized memoryless strategy into an

equivalent finite-memory one. In general, this is not the case even for classes

of games where we can trade memory for randomness, and it can easily be wit-

nessed on the one-player multi mean-payoff game depicted in Fig. 7.1. Consider

the expectation semantics. Expectation (1, 1) is achievable with a simple uni-

form distribution while it is not achievable with a pure, arbitrary high memory

strategy (even infinite).

We break down these results into three sections: energy games, multi mean-

payoff (parity) games, and single mean-payoff parity games. We start by consid-

ering energy games.
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s1s2 s3(2, 0) (0, 2)
(0, 0) (0, 0)

Figure 7.1: Randomization can replace memory, but not the opposite.

Remark 7.1. Since we consider finite-memory strategies, induced Markov chains

are finite and the usual argument holds to obtain that infimum and supremum

variants of the mean-payoff function coincide for worst-case and expected value

problems. In the following, we state our results for the infimum definition. C

7.2 Energy Games

Randomization is not helpful for energy objectives, even in one-player games.

The proof argument is obtained from the intuition that energy objectives are

similar in spirit to safety objectives. This was already illustrated in Ex. 2.28.

Lemma 7.2. Randomization is not helpful for almost-sure winning in one-

player and two-player energy, multi energy, energy parity and multi energy parity

games: if there exists a finite-memory randomized winning strategy, then there

exists a pure winning strategy with the same memory requirements.

Proof. Let G be a game fitted with an energy objective. Consider an almost-

sure winning strategy λ1. If there exists a single path π consistent with λ1

that violates the energy objective, then there exists a finite prefix witness ρ

sufficient to violate the energy objective. Moreover, as the finite prefix has

positive probability (otherwise the play is not consistent), and the strategy λ1 is

almost-sure winning, it follows that no such path exists. In other words, λ1 is a

sure winning strategy. Since randomization does not help for sure semantics, it

follows that randomization is not helpful for one-player and two-player energy,

multi energy, energy parity and multi energy parity games.
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7.3 Multi Mean-Payoff (Parity) Games

Randomized memoryless strategies can replace pure finite-memory ones in the

one-player multi mean-payoff parity case, but not in the two-player one, even

without parity. We first note a useful link between satisfaction and expectation

semantics for the mean-payoff objective.

Lemma 7.3. Let G = (S1, S2, E, k, w) be a game with initial state sinit ∈ S and

mean-payoff objective φ = MeanInfG(µ) for some threshold vector µ ∈ Qk. Let

λ1 ∈ ΛF1 be a strategy of P1. If λ1 is almost-sure winning for φ, then λ1 also

guarantees expectation at least µ for the mean-payoff function MP. The opposite

does not hold.

Proof. We first discuss the claimed implication. Suppose almost-sure winning is

verified. For all strategy λ2 ∈ Λ2 of P2, the set of consistent plays of mean-payoff

greater than or equal to µ has measure one, while the one of value strictly less

than µ has measure zero, by definition. Therefore, the expected mean-payoff

EG[λ1,λ2]
sinit (MP) is at least µ.

To show that the opposite does not hold, consider the simple one-player game

depicted in Fig. 7.1. Let λ1 be a simple coin flipping on s1, i.e., λ1(s1)(s2) = 1/2,

λ1(s1)(s3) = 1/2, λ1(s2)(s2) = 1 and λ1(s3)(s3) = 1. The expectation of this

strategy is v = (1, 1). Nevertheless, the probability of achieving mean-payoff at

least v is 0 < 1, which shows that the strategy is not almost-surely winning for

objective MeanInfG(v).

The fundamental difference between energy and mean-payoff is that energy

requires a property to be satisfied at all times (in that sense, it is similar to

safety), while mean-payoff is a limit property. As a consequence, what matters

here is the long-run frequencies of weights, not their order of appearance, as

opposed to the energy case.

Lemma 7.4. Pure finite-memory winning strategies can be traded for equally

powerful randomized memoryless ones for one-player multi mean-payoff parity

games, for both satisfaction and expectation semantics. For two-player games,

randomized memoryless strategies are not as powerful, even limited to expectation

semantics, no parity condition, and only two dimensions.



7.3 – Multi Mean-Payoff (Parity) Games 103

For the one-player case, we extract the frequencies of visit for edges of the

graph from the regular outcome that arises from the finite-memory strategy

of P1. We build a randomized strategy with probability distributions on edges

that yield the exact same frequencies in the long-run. Therefore, if the original

pure finite-memory of P1 is surely winning, the randomized one is almost-surely

winning.

In the two-player case, this approach cannot be used as frequencies are not

well-defined, since the strategy of P2 is unknown. Consider a game which needs

perfect balance between frequencies of appearance of two sets of edges in a play

to be winning (Fig. 7.2). To almost-surely achieve mean-payoff vector (0, 0), P1

must ensure that the long-term balance between edges (s4, s5) and (s4, s6) is the

same as the one between edges (s1, s3) and (s1, s2). This is achievable with mem-

ory as it suffices to react immediately to compensate the choice of P2. However,

given a randomized memoryless strategy of P1, P2 always has a strategy to en-

force that the long-term frequency is unbalanced, and thus the game cannot be

won almost-surely by P1 with such a strategy. Achieving expected mean-payoff

(0, 0) is also excluded.

s1

s2 s3

s4

s5 s6

(1,−1) (−1, 1)

(0, 0) (0, 0)

(1,−1) (−1, 1)

(0, 0) (0, 0)

Figure 7.2: Memory is needed to enforce perfect long-term balance.

Proof. We begin with the one-player case. Let Gp be a multi mean-payoff parity

game. Let λpf1 ∈ ΛPF1 be the pure finite-memory strategy of the player. Since

it is pure and finite, its unique outcome is a regular play π = ρ1 · (ρ2)ω, with

ρ1 ∈ S∗ and ρ2 ∈ S+. Let φ = MeanInfGp(µ)∩ParityGp be the multi mean-payoff

parity objective for some threshold vector µ ∈ Qk. Assume strategy λpf1 satisfies
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objective φ. Then it also yields expected mean-payoff at least equal to µ thanks

to Lemma 7.3. We claim that there exists a randomized memoryless strategy

λrm1 ∈ ΛRM1 that almost-surely satisfies φ and ensures expectation µ, and we

show how to build it.

We denote concatenation by the · symbol. Given a finite prefix ρ ∈ S∗ and

two states s, s′ ∈ S, we resp. denote by occ(s, ρ) and occ((s, s′), ρ) the number

of occurences of the state s and the transition (s, s′) in the prefix ρ. We add

the subscript ◦ when we count the first state of the prefix as the successor of

the last one (i.e., the prefix represents a cycle in the game graph). That is,

occ◦(∗, ρ) = occ(∗, ρ · First(ρ)).

Let us consider the mean-payoff of the unique outcome of strategy λpf1 . Recall

that for a play π ∈ Plays(Gp), written as the sequence π = s1, s2, s3 . . . , we have

MP(π) = lim infn→∞
1
n

∑
1≤i<nw(si, si+1). Since the play induced by λpf1 is

regular, the limit is well-defined and we may express the mean-payoff in terms

of frequencies, that is

MP(π) =
∑

(s,s′)∈E

w(s, s′) · freq∞((s, s′)),

where freq∞ denotes the long-term frequency of a transition defined as

∀ (s, s′) ∈ E, freq∞((s, s′)) =
occ◦((s, s

′), ρ2)

|ρ2|
.

We define the randomized memoryless strategy λrm1 in the following way:

∀ s, s′ ∈ S, (s, s′) ∈ E, X = {(s, t) | t ∈ S, (s, t) ∈ (ρ1 · First(ρ2))},

λrm1 (s)(s′) =



1

|X|
if s ∈ ρ1 ∧ s 6∈ ρ2,

occ◦((s, s
′), ρ2)

occ(s, ρ2)
if s ∈ ρ2,

0 otherwise.

Intuitively, we fix a uniform distribution over edges of the finite prefix ρ1 as we

only need to ensure reaching the bottom strongly connected component1 (BSCC)

1Maximal subgraphs of the Markov chain that are strongly connected and without exiting
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defined by ρ2 with probability 1, and the relative frequencies in ρ1 do not matter

(because these weights and priorities are negligible in the long run). On the

contrary, we use the exact frequencies for transitions of ρ2 as they prevail long-

term wise. Note that λrm1 is a correctly defined randomized memoryless strategy.

Obviously, λrm1 yields a Markov chain over states of (ρ1∪ρ2) such that states

of (ρ1 \ ρ2) are transient and states of ρ2 constitute a BSCC that is reached

with probability one. Thus, the mean-payoff induced by λrm1 is almost-surely

totally dependent on this BSCC mean-payoff value. As a consequence, proving

that transition frequencies in the BSCC are exactly the same as frequencies freq∞
defined by λpf1 will imply the claim on mean-payoff. Moreover, parity will remain

satisfied almost-surely as the sets of infinitely often visited states will be the same

for both the pure and the randomized strategy. Let T = {t1, t2, . . . , tm} be the

set of states that appear in ρ2. This BSCC is an ergodic Markov chain Me with

the following matrix of transition probabilities:

P =

t1 . . . tm


t1
occ◦((t1, t1), ρ2)

occ(t1, ρ2)
...

. . .

tm
occ◦((tm, tm), ρ2)

occ(tm, ρ2)

.

Classical analysis of ergodic Markov chains grants the existence of a unique

probability vector ν such that νP = ν, i.e.

∀ 1 ≤ i ≤ m, νi =
∑

1≤j≤m

occ◦ ((tj , ti), ρ2)

occ (tj , ρ2)
· νj .

This vector ν represents the occurence frequency of each state in an infinite run

over the Markov chain. It is easy to see that the unique probability vector ν

that satisfies νP = ν is

ν =

(
occ(t1, ρ2)

|ρ2|
, . . . ,

occ(tm, ρ2)

|ρ2|

)
.

edges of positive probability. See [GS97] or [BK08] for an introduction to the theory of Markov
chains.
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Moreover, given a transition of the Markov chain, its frequency is simply the

product of the frequency of its starting state by the probability of the tran-

sition when the chain is in this state: for all t, t′ ∈ T , we have the equality

freqMe
∞ ((t, t′)) = ν(t) · P (t, t′). By definition of ν and P , that is

freqMe
∞ ((t, t′)) =

occ◦((t, t
′), ρ2)

|ρ2|
= freq∞((t, t′)),

thus proving that the randomized strategy λrm1 almost-surely yields the same

mean-payoff and parity as the pure finite-memory one λpf1 . The expected value

threshold is also verified by Lemma 7.3.

Now it remains to show that this does not carry over to two-player games. In-

deed, we show that randomized memoryless strategies cannot replace pure finite-

memory ones for the expectation semantics, even without parity. By Lemma 7.3,

this implies that it cannot be verified for almost-sure semantics either. Consider

the game depicted in Fig. 7.2. Player P1 has a pure finite-memory strategy λpf1
that ensures MP(π) ≥ (0, 0), against all strategy λ2 of P2. This strategy is simply

to take the opposite choice of P2: λpf1 (∗s2s4) = s6 and λpf1 (∗s3s4) = s5. Now sup-

pose P1 uses a randomized memoryless strategy λrm1 such that λrm1 (s4)(s5) = p

and λrm1 (s4)(s6) = 1 − p, for some p ∈ [0, 1]. We claim that whatever the value

of p, there exists a counter-strategy λ2 for P2 such that EGp[λrm1 ,λ2]
s1 (MP) 6≥ (0, 0).

Suppose p ≥ 1/2 and let λ2(s1) = s2. Then, we have

EGp[λrm1 ,λ2]
s1 (MP) =

(1,−1) + [p · (1,−1) + (1− p) · (−1, 1)]

4

=
1

2
(p,−p) 6≥ (0, 0).

Now suppose p < 1/2 and let λ2(s1) = s3. Then, we have

EGp[λrm1 ,λ2]
s1 (MP) =

(−1, 1) + [p · (1,−1) + (1− p) · (−1, 1)]

4

=
1

2
(p− 1, 1− p) 6≥ (0, 0).

This shows that memory is needed to achieve expectation (0, 0) and concludes

our proof.
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7.4 Single Mean-Payoff Parity Games

Randomized memoryless strategies can replace pure finite-memory ones for single

mean-payoff parity games. The proof is in two steps.

First, we show that it is the case for the simpler case of mean-payoff Büchi

games (Lemma 7.7). Suppose P1 has a pure finite-memory winning strategy

for such a game. We use the existence of particular pure memoryless strategies

on winning states: the classical attractor for Büchi states, and a strategy that

ensures that cycles of the outcome have positive energy (whose existence fol-

lows from [CD12]). We build an almost-surely randomized memoryless winning

strategy for P1 by mixing those strategies in the probability distributions, with

sufficient probability over the strategy that is good for energy.

s1 s21

−1

−1

Figure 7.3: Mixing strategies that are resp. good for Büchi and good for energy.

We illustrate this construction on the simple game G depicted in Fig. 7.3.

Let λpf1 ∈ ΛPF1 be a strategy of P1 such that P1 plays (s1, s1) for 8 times, then

plays (s1, s2) once, and so on. This strategy ensures surely winning for the ob-

jective φ = MeanInfG(3/5)∩BuchiG({s2}). Obviously, P1 has a pure memoryless

strategy that ensures winning for the Büchi objective: playing (s1, s2). On the

other hand, he also has a pure memoryless strategy that ensures cycles of positive

energy: playing loop (s1, s1). Let λrm1 ∈ ΛRM1 be the strategy defined as follows:

play edge (s1, s2) with probability γ and edge (s1, s1) with the remaining prob-

ability. This strategy is almost-surely winning for φ for sufficiently small values

of γ (e.g., γ = 1/9).

Second, we extend this result to mean-payoff parity games using an induction

on the number of priorities and the size of games (Lemma 7.10). We consider

subgames that reduce to the MP Büchi and MP coBüchi cases. For MP coBüchi

games, pure memoryless strategies are known to suffice [CHJ05].
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7.4.1 Büchi case

A simpler case of the parity objective is the Büchi objective (see Sect. 2.3). It

corresponds to parity with priorities {0, 1}. Given a game G = (S1, S2, E, w),

let T ⊆ S denote the set of Büchi states such that a play is winning if it visits

infinitely often states of the set T .

We first state results on these Büchi objectives, as they are conceptually

simpler to understand. Proof arguments for parity are more involved and make

use of results on Büchi objectives.

Recall the notion of ε-optimality introduced in Sect. 2.2.4. In Fig. 7.4, we

present a game where finite-memory optimal strategies do not exist for P1,

whereas finite-memory ε-optimal strategies exist for any ε > 0. Indeed, P1

has to visit s2 infinitely often, but he has to delay its visits of s2 for longer and

longer intervals in order to achieve value 1 for the mean-payoff. This requires

infinite memory. However, for any fixed ε > 0, P1 can set up a finite-memory

strategy that visits s2 rarely enough to achieve mean-payoff 1− ε.

s1 s21

0

0

Figure 7.4: Mean-payoff Büchi requires infinite memory for optimality.

We show that finite-memory strategies can be traded for randomized mem-

oryless ones in mean-payoff Büchi games. Precisely, we prove that ε-optimality

can as well be achieved by randomized memoryless strategies (when relaxing to

almost-sure semantics). We first need to state two useful lemmas granting the

existence of pure memoryless strategies that are resp. good-for-energy or good-

for-Büchi strategies, in all states that are winning for the mean-payoff Büchi

objective. These strategies will help us build the needed ε-optimal strategies.

Lemma 7.5 (Extension of [CD12, Lemma 4]). Let G = (S1, S2, E, w) be

a game with T ⊆ S the set of Büchi states. Let Win ⊆ S be the set of winning

states for the mean-payoff Büchi objective with worst-case mean-payoff threshold

zero. For all s ∈Win, P1 has a uniform (i.e., independent of the starting state)
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memoryless good-for-energy strategy λgfe1 whose outcome never leaves the set Win,

such that any cycle of this outcome has a non-negative energy level.

Lemma 7.6 (Classical attractor strategy). Let G = (S1, S2, E, w) be a game

with T ⊆ S the set of Büchi states. Let Win ⊆ S be the set of winning states for

the mean-payoff Büchi objective with worst-case mean-payoff threshold zero. For

all s ∈Win, P1 has a uniform (i.e., independent of the starting state) memoryless

good-for-Büchi strategy λ♦T1 , an attractor strategy for T , whose outcome never

leaves the set Win, such that it ensures reaching T in at most |S| steps.

The randomized memoryless strategy of P1 will thus consist in mixing these

two strategies, with a very low probability on the good-for-Büchi strategy. In-

deed, the Büchi objective will be almost-surely satisfied whatever this probability

is, provided it is strictly positive. On the other hand, by giving more weight to

the good-for-energy strategy, P1 can obtain a mean-payoff that is arbitrary close

to the optimum.

Lemma 7.7. In mean-payoff Büchi games, ε-optimality can be achieved surely

by pure finite-memory strategies and almost-surely by randomized memoryless

strategies.

Proof. Let G = (S1, S2, E, w) be a game with T ⊆ S the set of Büchi states and

sinit ∈ S the initial state. We consider the mean-payoff objective with worst-case

threshold zero (w.l.o.g.). Let Win ⊆ S be the set of winning states for the mean-

payoff Büchi objective. By Lemma 7.5 and Lemma 7.6, for all s ∈ Win, P1 has

two uniform memoryless strategies λgfe1 and λ♦T1 , whose outcomes never leave the

set Win, such that λgfe1 ensures that any cycle of its outcome has non-negative

energy, and λ♦T1 , an attractor strategy for T , ensures reaching T in at most |S|
steps.

We first build ε-optimal pure finite-memory strategies based on these two

pure memoryless strategies. Let ε > 0. As usual, W denotes the largest absolute

weight on any edge. Let us define λpf1 ∈ ΛPF1 such that (a) it plays λgfe1 for⌈
2·W ·|S|

ε

⌉
− |S| steps, then (b) it plays λ♦T1 for |S| steps, then again (a). This

ensures that T is visited infinitely often as λ♦T1 is played infinitely many times

for |S| steps in a row. Furthermore, the total cost of phases (a) + (b) is bounded

by −2 ·W · |S|, and thus the mean-payoff of the outcome is at least −ε, against

any strategy of the adversary.



110 Chapter 7 – Trading Finite Memory for Randomness

Second, we show that based on the same pure memoryless strategies, it is

possible to obtain almost-surely ε-optimal randomized memoryless strategies.

That is,

∀ ε > 0, ∃λrm1 ∈ ΛRM1 , ∀λ2 ∈ Λ2,

PG[λrm1 ,λ2]
sinit (π � �♦T ) = 1 ∧ PG[λrm1 ,λ2]

sinit (MP(π) ≥ −ε) = 1.

Note that pure memoryless strategies suffice for P2 as he essentially has to win

against the Büchi or the mean-payoff criterion [BMOU11]. Therefore, given

ε > 0, we need to build some strategy λrm1 ∈ ΛRM1 such that

∀λpm2 ∈ ΛPM2 , PG[λrm1 ,λpm2 ]
sinit (π � �♦T ) = 1 ∧ PG[λrm1 ,λpm2 ]

sinit (MP(π) ≥ −ε) = 1.

We build such a strategy as follows:

∀s ∈ S, λrm1 (s) =

λ
gfe
1 (s) with probability 1− γ,

λ♦T1 (s) with probability γ,

for some well-chosen γ ∈ ]0, 1[.

It is straightforward to see that the Büchi objective is almost-surely satisfied

for all values of γ > 0 as at all times, the probability of playing according to λ♦T1

for |S| steps in a row, and thus ensuring a visit of T , is γ|S|, which is strictly

positive.

It remains to study if it is always possible to choose such a constant γ such

that objective MeanInfG(−ε) is almost-surely satisfied. Consider such a strategy

λrm1 ∈ ΛRM1 and some fixed strategy λpm2 ∈ ΛPM2 of P2: the game reduces to the

finite Markov chain M = G[λrm1 , λpm2 ].

Suppose λpm2 is winning for P2. Thus, PMsinit (MP(π) < −ε) > 0. The mean-

payoff depends on limit behavior: the probability measure of plays that do not

enter in a bottom strongly connected component (BSCC) is zero [BK08], whereas

in a BSCC, the expected mean-payoff is the same in all states and it is obtained

almost-surely.2 This implies that there exists some BSCC B in M such that

PMsinit (♦B) > 0 and EB (MP) < −ε.
2This follows from definition of BSCCs and prefix-independence of the mean-payoff. Further

discussion of the subject is presented in Part IV.
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We claim that it is possible to choose γ such that all BSCCs, in all Markov

chains induced by pure memoryless strategies of P2, have expectation greater

than or equal to ε, thus proving that strategy λrm1 is almost-surely ε-optimal

with regard to the mean-payoff value function. Intuitively, the smaller this con-

stant γ is chosen, the nearer will the expected mean-payoff induced by λrm1 be

to the one induced by λgfe1 , that is at least zero. Since the number of pure mem-

oryless strategies of P2 is finite, and so is the number of BSCCs induced by λrm1
(regardless of the exact value of γ ∈ ]0, 1[, we obtain the same BSCCs in terms

of states and edges), one can compute a suitable γ for each of them, and take

the mininum to ensure that the property will be satisfied in all possible cases.

Therefore, let us fix some strategy λpm2 of P2, and some BSCC B of the

induced Markov chain when played against strategy λrm1 of P1. It remains to

show that (claim) there exists γ ∈ ]0, 1] such that EB(γ)(MP) ≥ −ε to conclude

this proof. Observe that we write B(γ) as transition probabilities inside B depend

on γ.

By contradiction, suppose the claim is false. Precisely, we assume that (con-

tradiction hypothesis) for all γ ∈ ]0, 1], we have that EB(γ)(MP) < −ε.
Besides, observe that for γ = 0, strategy λrm1 is exactly equal to λgfe1 . As

we know that λgfe1 ensures a worst-case mean-payoff at least equal to zero, we

trivially deduce that EB(0) ≥ 0. This implies that

sup
γ∈[0,1]

EB(γ) ≥ EB(0) ≥ 0.

Notice that in this case, interval [0, 1] is closed.

By results in the literature, it is known that this supremum is continuous. See

for example Solan [Sol03] on the continuity of the optimal expected value function

in the general context of competitive Markov decision processes (equivalent to

21
2 -player games). Therefore, we have that

sup
γ∈]0,1]

EB(γ) = sup
γ∈[0,1]

EB(γ) ≥ EB(0) ≥ 0.

On the other hand, by (contradiction hypothesis), we also have that

sup
γ∈]0,1]

EB(γ) ≤ −ε.
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Since ε is strictly positive, there is a clear contradiction, which concludes our

proof.

7.4.2 Parity Case

Given the results for mean-payoff Büchi games, we now consider the more general

case of mean-payoff parity games. Given a game Gp = (S1, S2, E, w, p) and a

set A ⊆ S, recall that Gp � A denotes the subgame induced by A, as defined in

Sect. 2.1. Also, recall the notion of attractors, again defined in Sect. 2.1. For

any set A ⊆ S, AttrPiGp(A) contains all the states in S from which Pi can force a

visit to A, and it is well known that P1 has a pure memoryless strategy to force

such a visit from those states. Also, it is clear that Pi does not have a strategy

to leave the states in S \AttrPiGp(A). As direct consequence, we have the following

proposition.

Proposition 7.8. Let Gp = (S1, S2, E, w, p) be a game and sinit ∈ S an initial

state. Let U ⊆ S and AttrP1
Gp

(U) be such that B = S \ AttrP1
Gp

(U) is non-empty,

then Gp � B is a deadlock-free subgame.

The following lemma states that optimal pure memoryless strategies exist

for P1 in games with mean-payoff coBüchi objectives (i.e., parity with priorities

taken in {1, 2}). For mean-payoff Büchi objectives, we showed in Lemma 7.7

that, for all ε > 0, ε-optimal randomized memoryless strategies exist.

Lemma 7.9 ([CHJ05, Theorem 5]). Let Gp = (S1, S2, E, w, p) be a game

with priorities {1, 2}, and Winp≥0 be the set of nodes in Gp from which P1 wins

the mean-payoff coBüchi objective for threshold zero (w.l.o.g.). Then from all

states in Winp≥0, P1 has a pure memoryless winning strategy for the coBüchi

mean-payoff objective for threshold zero.

We now establish that ε-optimal randomized memoryless strategies also exist

for mean-payoff parity games, and thus, can replace pure finite-memory ones.

Lemma 7.10. Let Gp = (S1, S2, E, w, p) and Winp≥0 be the set of nodes in Gp

from which P1 wins the mean-payoff parity objective for threshold zero. Then

for all ε > 0, there exists λrm1 ∈ ΛRM1 , such that for all s ∈ Winp≥0 and for all

λ2 ∈ Λ2, we have that:

PG[λrm1 ,λ2]
s (MP(π) ≥ −ε) = 1 ∧ PG[λrm1 ,λ2]

s (Par(π) mod 2 = 0) = 1.
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Proof. The proof is by induction on the lexicographic order � on games, defined

as follows: G1
p � G2

p if G1
p has less priorities than in G2

p or G1
p has the same

priorities than in G2
p but less states. Clearly, this lexicographic order is well-

founded.

The base cases are twofold: one for the number of states, and one for pri-

orities. First, if the game is such that |S| = 1, then obviously, if P1 can win,

he can do so with a pure memoryless strategy, which respects the claim. Sec-

ond, for two priorities. W.l.o.g., we can assume that all priorities are either

in {0, 1} or in {1, 2}. Those cases resp. correspond to mean-payoff Büchi and

mean-payoff coBüchi games. The result for mean-payoff Büchi games has been

established in Lemma 7.7, while the result for mean-payoff coBüchi games is a

direct consequence of Lemma 7.9, as pure memoryless strategies are a special

case of randomized memoryless strategies.

Let us now consider the inductive case. Suppose we have a mean-payoff parity

game Gp with m priorities and |S| states. W.l.o.g., we can make the assumption

that the lowest priority in Gp is either 0 or 1, otherwise we subtract an even

number to all priorities so that we are in that case. We introduce the following

sets: U0 = {s ∈Winp≥0 | p(s) = 0} and U1 = {s ∈Winp≥0 | p(s) = 1}.
We consider the two possible following situations: (A) U0 is empty or (B) it

is not.

Case (A). First assume U0 is empty. In that case U1 is not empty. Let us

consider A2 = AttrP2
Gp

(U1) the attractor of P2 for U1. It must be the case that

Winp≥0 \ A2 is non-empty, otherwise this would contradict the fact that P1 is

winning the parity objective from states in Winp≥0. Indeed, if it was not the

case, then P2 would be able to force an infinite number of visits to U1 from all

states in Winp≥0, and the parity would be odd as U0 is empty, a contradiction

with the definition of Winp≥0.

(i) Let B = Winp≥0 \ A2. First note that, as B is non-empty, by Proposi-

tion 7.8, Gp � B is a deadlock-free subgame. Also, note that from all states in

B, it must be the case that P1 has a winning strategy that does not require

visits of the states outside B, i.e., states in A2, for otherwise this would lead to

a contradiction with the fact that P1 is winning the parity objective in Winp≥0.

So all states in the subgame Gp � B are winning for P1. The game Gp � B does

not contain states with priority 0, and so we can apply our induction hypothesis
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to conclude that P1 has a memoryless randomized strategy from all states in B,

as (Gp � B) � Gp since it has one less priority.

(ii) Now, let us concentrate on states in A2. Let A1 = AttrP1
Gp

(B). From

states in A1, P1 has a pure memoryless strategy to reach states in B, and so

from there P1 can play as in Gp � B, and we are done. Let C = A2 \ A1. If C

is empty, we are done. Otherwise, by Proposition 7.8, Gp � C is a deadlock-free

subgame (P2 can force to stay within C). We conclude that all states in this

game must be winning for P1. This game has the same minimal priority than

in the original game (i.e., priority 1) but it has at least one state less, and so

we can apply our induction hypothesis to conclude that P1 has a memoryless

randomized strategy from all states in C.

Therefore, by (i) and (ii), P1 has a memoryless randomized strategy from all

states in Winp≥0, which proves the claim in that case.

Case (B). Second, assume U0 is not empty. Let us consider the attractor set

A1 = AttrP1
Gp

(U0).

(iii) First, consider the case where A1 = Winp≥0. In this case, it means that P1

can force a visit to states in U0 from any states in Winp≥0. So, we conclude that

P1 wins in Gp the mean-payoff Büchi game with threshold 0, and by Lemma 7.7,

we conclude that P1 has a memoryless randomized strategy from all states in Gp

for almost-surely winning the parity game with mean-payoff threshold 0 so we

are done.

(iv) Second, consider the case where B = Winp≥0 \ A1 is non-empty. Then

by Proposition 7.8, Gp � B is a deadlock-free subgame. So P2 can force to stay

within B in the original game and so we conclude that all states in the game

Gp � B are winning for P1. As Gp � B does not contain states of priority 0,

and thus has at least one less priority, we can apply the induction hypothesis to

conclude that P1 has a memoryless randomized strategy from all states in B.

Therefore, by (iii) and (iv), P1 has a memoryless randomized strategy from

all states in Winp≥0, which also proves the case.

As we have established the claim in both possible cases, this concludes the

proof.
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7.5 Wrap-up

We sum up results for these different classes of games in Theorem 7.11 (also see

Table 7.1).

Theorem 7.11 (Trading finite memory for randomness). The following

assertions hold:

(1) Randomized strategies are exactly as powerful as pure strategies for energy

objectives. Randomized memoryless strategies are not as powerful as pure

finite-memory strategies for almost-sure winning in one-player and two-

player energy, multi energy, energy parity and multi energy parity games.

(2) Randomized memoryless strategies are not as powerful as pure finite-memory

strategies for almost-sure winning in two-player multi mean-payoff games.

(3) In one-player multi mean-payoff parity games, and two-player single mean-

payoff parity games, if there exists a pure finite-memory sure winning strat-

egy, then there exists a randomized memoryless almost-sure winning strategy.

Proof. (1) For energy games, results follow from Lemma 7.2. (2) For two-player

multi mean-payoff games, they follow from Lemma 7.4. (3) For one-player multi

mean-payoff games, they follow from Lemma 7.4. For two-player single mean-

payoff parity, they are direct consequence of Lemma 7.10.

We close this section by observing that there are even more powerful classes

of strategies. Their study, as well as their practical interest, remains open.

Lemma 7.12. Randomized finite-memory strategies are strictly more powerful

than both randomized memoryless and pure finite-memory strategies for multi-

mean payoff games with expectation semantics, even in the one-player case.

The intuition is essentially that memory permits to achieve an exact payoff

by sticking to a given side, while randomization permits to combine payoffs of

pure strategies to achieve any linear combination in between.

Proof. Consider the game G depicted in Fig. 7.5. Whatever the pure finite-

memory strategy of P1, the only achievable mean-payoff values are (1,−1) (if

(s1, s2) is never taken) and (−1, 1) (if (s1, s2) is taken). This is also true for
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s1 s2

(1,−1) (−1, 1)

(0, 0)

Figure 7.5: Randomized finite memory is strictly more powerful than randomized
memorylessness and pure finite memory.

randomized memoryless strategies: either the probability of (s1, s2) is null and

the mean-payoff has value (1,−1), or this probability is strictly positive, and the

mean-payoff almost-surely has value (−1, 1) as the probability mass will eventu-

ally reach s2. In contrast, expected value (0, 0) is achievable by a randomized

finite-memory strategy. Indeed, consider the strategy that tosses a coin in its

first visit of s1 to decide if it will always play edge (s1, s1) or if it will play edge

(s1, s2) once and then always play edge (s2, s2). This strategy only needs one

bit of memory and one bit to encode probabilities, and still, it is strictly more

powerful than any amount of pure memory or any arbitrary high precision for

probabilities without memory.
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Window Objectives





CHAPTER 8
Window Mean-Payoff

Introduction � Definition � Relation with Classical Objectives

Applicability of total-payoff and mean-payoff objectives can prove to be chal-

lenging for synthesis tasks for at least two reasons.

First, they characterize long-run behaviors over infinite plays. A desired

property in many practical problems is to provide bounds on time frames in

which an acceptable behavior can be witnessed.

Second, both objectives face complexity barriers. Whether one-dimension

mean-payoff and total-payoff games belong to P or not is a long-standing open

problem. Moreover, we proved in Theorem 4.8 that total-payoff becomes unde-

cidable in multi-dimension games.

We introduce conservative approximations of these objectives, based on the

window mean-payoff objective (WMP) that considers the payoff over a local finite

window sliding along a play, instead of the whole play. This objective strengthen

classical quantitative specifications with timing guarantees. Moreover, we prove

in the following chapters that it benefits from improved tractability.

Window objectives were studied in joint work with Chatterjee, Doyen and

Raskin [CDRR13a,CDRR13b].

119
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8.1 Introduction

Window objectives. We propose to study variants of the classical total-payoff

and mean-payoff objectives that can express guarantees on time frames. Namely,

the bounded window mean-payoff 1 and fixed window mean-payoff objectives.

In a window mean-payoff objective, instead of the long-run average along

the whole play, we consider payoffs over a local bounded window sliding along

the play. The objective is that the average weight must be at least zero before

the end of every bounded window from some point on. This can be seen as a

strengthening of the mean-payoff objective (resp. of the total-payoff objective if

we require that the window objective is satisfied from the beginning of the play

rather than from some point on). That is, winning for the window mean-payoff

implies winning for the mean-payoff.

In the fixed window variant, the bound on the window size is a parameter.

In the bounded window, the question is whether there exists a finite bound such

that the corresponding fixed window objective is satisfied on the considered play.

Attractive features for window objectives. First, they are a strengthen-

ing of total-payoff and mean-payoff objectives and hence provide conservative

approximations (see Lemma 8.3 for a formal definiton).

Second, the window variant is very natural to study in system analysis. Mean-

payoff objectives require the average payoff to satisfy certain threshold in the

long-run (or in the limit of the infinite path), whereas the window objectives re-

quire to provide guarantee on the average, not in the limit, but within a bounded

time, and thus provide better time guarantee than the mean-payoff objectives.

Third, the window parameter provides flexibility : it can be adjusted specific

to applications requirement of strong or weak time guarantee.

Finally, our variant in the single dimension is more computationally tractable,

which makes it an attractive alternative to classical objectives.

Applicability. In the context of ω-regular objectives, the traditional infini-

tary notion of liveness has been strengthened to finitary liveness [AH98], where

instead of requiring that good events happen eventually, they are required to

happen within a finite time bound. The notion of finitary parity games was

1We name our objective by analogy with the mean-payoff, but equivalent definition could
be used based on the total-payoff.
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introduced and studied in [CH06], and a polynomial time algorithm for finitary

parity games was given in [CHH09]. The notion of finitary conditions has also

been extended to prompt setting where the good events are required to happen

as promptly as possible [KPV09]. Our work extends the study of such finite time

frames in the setting of quantitative objectives, and our window objectives can

be viewed as an extension of finitary conditions for mean-payoff and total-payoff

objectives.

With regard to applications, our window variants provide a natural frame-

work to reason about quantitative properties under local finite horizons. To il-

lustrate this point, consider a classical example of application with mean-payoff

aspects, as presented by Bohy et al. in the context of synthesis from LTL specifi-

cations enriched with mean-payoff objectives [BBFR13]. Consider the synthesis

of a suitable controller for a computer server having to grant requests to differ-

ent types of clients. The LTL specification can express that all grants should

eventually be granted. Adding quantities and a mean-payoff objective helps in

defining priorities between requests and associating costs to the delays between

requests and grants, depending of the relative priority of the request. Window

objectives are useful for modeling such applications. Indeed, it is clear that in

a desired controller, requests should not be placed on hold for an arbitrary long

time. Similarly, if we have two types of requests, with different priorities, and we

want to ensure guarantees on the mean waiting time per type of request, it seems

natural that an adequate balance between the two types should be observable

within reasonable time frames (which can be defined as part of the specification

with our new objectives) instead of possible great variations that are allowed by

the classical mean-payoff objective.

Structure. This chapter presents window objectives and summarizes the main

results. We then divide our analysis into two chapters: Chap. 9 for one-dimension

games and Chap. 10 for multi-dimension games. Core literature on classical

mean-payoff and total-payoff objectives is presented in Sect. 2.3.2.

8.1.1 Assumptions

Pure strategies. We would like to stress on a restriction present in Part III

with regard to the general setting described in Chap. 2. Throughout our whole

study of games with window objectives, we only consider pure strategies,
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for both players. Consequently, we only use sure winning semantics. This is the

traditional setting of two-player games, and a first important model to investigate

when introducing new winning objectives.

Extension to the stochastic setting. Study of window objectives in a

stochastic context (as a first step, MDPs) could be a promising future work.

Almost-sure semantics would adequately fit the problem.

However, it should be noticed that defining relevant problems based on ex-

pected value semantics seems challenging in the context of window objectives.

Indeed, there is no global value function to optimize over plays, and considering

the expectation over windows may not be the most natural choice: windows slide

over individual plays while expectation describes a property linked to the tree

unfolding of the MDP, i.e., sets of plays.

Hence, the first effort in extending the problem to the stochastic context

should be put in adequate formalization of the interesting questions to solve.

8.1.2 Overview of Results

One-dimension games. Corresponding results are summarized in Table 8.1.

We present an algorithm for the fixed window objective that is polynomial in

the size of the game graph times the length of the binary encoding of weights

times the size of the fixed window. Thus if the window size is polynomial, we

have a polynomial-time algorithm.

For the bounded window problem we show that the decision problem is

in NP ∩ coNP, and at least as hard as solving mean-payoff games. However,

winning for mean-payoff games does not imply winning for the bounded window

mean-payoff objective, i.e., the winning sets for mean-payoff games and bounded

window mean-payoff games do not coincide. Moreover, the structure of winning

strategies is also very different, e.g., in mean-payoff games both players have

memoryless winning strategies, but in bounded window mean-payoff games we

show that P2 requires infinite memory.

We also show that if P1 wins the bounded window mean-payoff objective,

then a window of size (|S| − 1) · (|S| ·W + 1) is sufficient where S is the state

space, and W is the largest absolute weight value.
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one-dimension

complexity P1 mem. P2 mem.

MP / MP
NP ∩ coNP memoryless

TP / TP

WMP: fixed
P-c. (Thm. 9.6) memory required

≤ linear(|S| · lmax)

(Thm. 9.6)

polynomial window

WMP: fixed P(|S|, V, lmax)

arbitrary window (Thm. 9.6)

WMP: bounded NP ∩ coNP memoryless infinite

window problem (Thm. 9.16) (Thm. 9.16) (Thm. 9.16)

Table 8.1: Complexity of deciding the winner and memory required in one-
dimension window games. We denote by lmax the window size and by V the
length of the binary encoding of weights. New results in bold (c. for complete).

k-dimension

complexity P1 mem. P2 mem.

MP / MP coNP-c./NP ∩ coNP infinite memoryless

TP / TP undec. (Thm. 4.8) - -

WMP: fixed PSPACE-h./EXP-e.

polynomial window (Thm. 10.9) exponential

WMP: fixed
EXP-c. (Thm. 10.9)

(Thm. 10.9)

arbitrary window

WMP: bounded NPR-h.
- -

window problem (Thm. 10.10)

Table 8.2: Complexity of deciding the winner and memory required in multi-
dimension window games. New results in bold (h. for hard, e. for easy, c. for
complete, EXP for EXPTIME and NPR for non-primitive recursive).
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Finally, we show that (i) a winning strategy for the bounded window mean-

payoff objective of threshold zero ensures that the mean-payoff is non-negative

regardless of the strategy of the opponent; and (ii) a strategy that ensures that

the mean-payoff is strictly positive is winning for the bounded window mean-

payoff objective of threshold zero.

Multi-dimension games. Corresponding results are summarized in Table 8.2.

Fixed window games are EXPTIME-complete (both for arbitrary dimensions

with weights in {−1, 0, 1} and for two dimensions with arbitrary weights); and

if the window size is polynomial, then the problem is PSPACE-hard.

For the bounded window, the problem is non-primitive-recursive-hard (i.e.,

there is no primitive recursive algorithm to decide the problem).

Memory requirements. For all the problems for which we prove decidability

we also characterize the memory required by winning strategies.

8.2 Definition

In window objectives, the intuition is that local deviations from the threshold

must be compensated in a parameterized number of steps. We consider a window,

sliding along a play, within which the compensation must happen. Our approach

can be applied both to mean-payoff and total-payoff objectives. Since we consider

finite windows, both versions coincide for threshold zero. Hence we present our

results for mean-payoff.

8.2.1 Objectives and Decision Problems

Given a (possibly multi-dimension) two-player game G = (S1, S2, E, k, w) and a

rational threshold v ∈ Qk, we define the following objectives.2

◦ Given lmax ∈ N0, the good window objective

GWG(v, lmax) =
{
π | ∀ t, 1 ≤ t ≤ k, ∃ l ≤ lmax,

1

l

l−1∑
p=0

w
(
eπ(p, p+ 1)

)
(t) ≥ v(t)

}
,

(8.1)

2For brevity, we omit that π ∈ Plays(G).
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where eπ(p, p+1) is the edge (Last(π(p)), Last(π(p+1))), requires that for all

dimensions, there exists a window starting in the first position and bounded

by lmax over which the mean-payoff is at least equal to the threshold.

◦ Given lmax ∈ N0, the direct fixed window mean-payoff objective

DirFixWMPG(v, lmax) =
{
π | ∀ j ≥ 0, π(j,∞) ∈ GWG(v, lmax)

}
(8.2)

requires that good windows bounded by lmax exist in all positions along

the play.

◦ The direct bounded window mean-payoff objective

DirBndWMPG(v) =
{
π | ∃ lmax > 0, π ∈ DirFixWMPG(v, lmax)

}
(8.3)

asks that there exists a bound lmax such that the play satisfies the direct

fixed objective.

◦ Given lmax ∈ N0, the fixed window mean-payoff objective

FixWMPG(v, lmax) =
{
π | ∃ i ≥ 0, π(i,∞) ∈ DirFixWMPG(v, lmax)

}
(8.4)

is the prefix-independent version of the direct fixed window objective: it

asks for the existence of a suffix of the play satisfying it.

◦ The bounded window mean-payoff objective

BndWMPG(v) =
{
π | ∃ lmax > 0, π ∈ FixWMPG(v, lmax)

}
(8.5)

is the prefix-independent version of the direct bounded window objective.

For any v ∈ Qk and lmax ∈ N0, the following inclusions are true:

DirFixWMPG(v, lmax) ⊆ FixWMPG(v, lmax) ⊆ BndWMPG(v), (8.6)

DirFixWMPG(v, lmax) ⊆ DirBndWMPG(v) ⊆ BndWMPG(v). (8.7)

All objectives can be equivalently expressed for threshold v = {0}k by modi-

fying the weight function. Hence, given any variant of the objective, the associ-

ated decision problem is to decide the existence of a winning strategy for P1 for

threshold {0}k. For complexity purposes, we distinguish polynomial (in the size

of the game) from arbitrary (i.e., non-polynomial) window sizes.
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Notice that all those objectives define Borel sets. Hence they are determined

by Martin’s theorems [Mar75,Mar98].

Discussion. Introduction of new objectives is a delicate task: our formalization

is the result of a long modeling process. On the applicability standpoint, we are

driven by potential needs in applications and the issue of timing guarantees in

specifications. On the theoretical one, we pay attention in providing a model with

robust properties. For example, existential quantification over the window size l

bounded by lmax in GWG(v, lmax) is preferable to only considering what happens

in the window of size lmax: the former option grants monotonicity, a natural wish

for specification purposes, while the latter does not. On the same note, undirect

variants of our objectives are prefix-independent, another interesting property.

Inductive property of windows. Let π = s0s1s2 . . . be a play. Fix any

dimension t, 1 ≤ t ≤ k. The window from position j to j′, 0 ≤ j < j′, is closed

if there exists j′′, j < j′′ ≤ j′ such that the sum of weights in dimension t over

the sequence sj . . . sj′′ is non-negative. Otherwise the window is open. Given a

position j′ in π, a window is still open in j′ if there exists a position 0 ≤ j < j′

such that the window from j to j′ is open.

Consider any edge (si, si+1) appearing along π. If the edge is non-negative

in dimension t, the window starting in i immediately closes. If not, a window

opens that must be closed within lmax steps. Consider the first position i′ such

that this window closes, then we have that all intermediary opened windows also

get closed by i′, that is, for any i′′, i < i′′ ≤ i′, the window starting in i′′ is closed

before or when reaching position i′. Indeed, the sum of weights over the window

from i′′ to i′ is strictly greater than the sum over the window from i to i′, which

is non-negative. We call this fact the inductive property of windows.

8.2.2 Illustration

We depict the operation of the direct fixed window mean-payoff on a hypotetical

play in Fig. 8.1. Furthermore, we provide two concrete examples in the following.

Example 8.1. Consider the game depicted in Fig. 8.2. It has a unique outcome,

and it is winning for the classical mean-payoff objective of threshold 0, as well

as for the infimum (resp. supremum) total-payoff objective of threshold −1

(resp. 0). Consider the fixed window mean-payoff objective for threshold 0. If
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Sum

Time

(a) The maximal window is placed over the
initial state.

Sum

Time

(b) The window of size 1 is good so the
maximal window slides to the next state.

Sum

Time

(c) Again, the first window is good and the
maximal window slides.

Sum

Time

(d) Window size 1 does not suffice: we en-
large the tested window to size 2.

Sum

Time

(e) Still a bad window for size 2. But size 3
is still less than lmax = 4, so we enlarge
again.

Sum

Time

(f) Finally, a non-negative mean-payoff is
observed. The maximal window can re-
sume sliding.

Figure 8.1: Illustration of the direct fixed window objective for maximal window
size lmax = 4 and threshold zero: the maximal window (orange) slides along
the play from its starting state and a good window (green) should be found at
each step. A window is good if the mean-payoff inside it is non-negative. Bad
windows are in red. The tested window is enlarged incrementally up to the
maximal window if necessary.
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the size of the window is bounded by 1, the play is losing.3 However, if the

window size is at least 2, the play is winning, as in s3 we close the window in

two steps and in s4 in one step. Notice that by definition of the objective, it is

clear that it is also satisfied for all larger sizes.4 As the fixed window objective is

satisfied for size 2, the bounded window objective is also satisfied. On the other

hand, if we restrict the objectives to their direct variants, then none is satisfied,

as from s2, no window, no matter how large it is, gets closed. C

s1 s2 s3 s4
1 −1

−1

1

Figure 8.2: Fixed window is satisfied for
lmax ≥ 2, whereas even direct bounded
window is not.

s1 s2 0

−1

1

Figure 8.3: Mean-payoff is satis-
fied but none of the window ob-
jectives is.

Example 8.2. Consider the game of Fig. 8.3. Again, the unique strategy of P1

satisfies the mean-payoff objective for threshold 0 as all simple cycles are non-

negative. It also ensures value −1 for the infimum and supremum total-payoffs.

Consider the strategy of P2 that takes the self-loop once on the first visit of s2,

twice on the second, and so on. Clearly, it ensures that windows starting in s1

stay open for longer and longer numbers of steps (we say that P2 delays the

closing of the window), hence making the outcome losing for the bounded win-

dow objective (and thus the fixed window objective for any lmax ∈ N0). This

illustrates the added guarantee (compared to mean-payoff) asked by the win-

dow objective: in this case, no upper bound can be given on the time needed

for a window to close, i.e., on the time needed to get the local sum back to

non-negative. Note that P2 has to go back to s1 at some point: otherwise, the

prefix-independence of the objectives allows P1 to wait for P2 to settle on cycling

and win. Also observe that P2 requires infinite-memory to continue to increase

3A window size of one actually requires that all infinitely often visited edges are of non-
negative weights.

4As discussed before, the existential quantification on the window size l, bounded by lmax,
is indeed crucial in eq. (8.1) to ensure monotonicity with increasing maximal window sizes, a
desired behavior of the definition for theoretical properties and intuitive use in specifications.



8.3 – Relation with Classical Objectives 129

the delay unboundedly. For the direct variants, P2 has a simpler winning strat-

egy consisting in looping forever, as enforcing one permanently open window is

sufficient. C

8.3 Relation with Classical Objectives

We introduce the bounded window objectives as conservative approximations of

mean-payoff and total-payoff in one-dimension games. Indeed, in Lemma 8.3, we

show that winning the bounded window (resp. direct bounded window) objective

implies winning the mean-payoff (resp. total-payoff) objective while the converse

implication is only true if a strictly positive mean-payoff (resp. arbitrary high

total-payoff) can be ensured.

Lemma 8.3. Given a one-dimension game G = (S1, S2, E, w), the following

assertions hold.

(a) If the answer to the bounded window mean-payoff problem is Yes, then the

answer to the mean-payoff threshold problem for threshold zero is also Yes.

(b) If there exists ε > 0 such that the answer to the mean-payoff threshold prob-

lem for threshold ε is Yes, then the answer to the bounded window mean-

payoff problem is also Yes.

(c) If the answer to the direct bounded window mean-payoff problem is Yes, then

the answer to the supremum total-payoff threshold problem for threshold zero

is also Yes.

(d) If the answer to the supremum total-payoff threshold problem is Yes for all

integer thresholds (i.e., the total-payoff value is ∞), then the answer to the

direct bounded window mean-payoff problem is also Yes.

Assertions (a) and (c) follow from the decomposition of winning plays into

bounded windows of non-negative weights. The key idea for assertions (b)

and (d) is that mean-payoff and total-payoff objectives always admit memo-

ryless winning strategies, for which the consistent outcomes can be decomposed

into simple cycles (i.e., with no repeated edge) over which the mean-payoff is at

least equal to the threshold and which length is bounded. Hence they correspond

to closing windows. Note that strict equivalence with the classical objectives is

not verified, as witnessed before (Fig. 8.3).
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Proof. Assertion (a). In the one-dimension case, sup. and inf. mean-payoff

problems coincide. Let π ∈ Plays(G) be such that π ∈ BndWMPG(0). There

exists i ≥ 0 such that the suffix of π starting in i can be decomposed into an

infinite sequence of bounded segments (i.e., windows) of non-negative weight.

Thus, this suffix satisfies the sup. mean-payoff objective as there are infinitely

many positions where the total sum from i is non-negative. Since the mean-payoff

objective is prefix-independent, the play π is itself winning.

Assertion (b). Consider a memoryless winning strategy of P1 for the mean-

payoff of threshold ε > 0. Only strictly positive simple cycles can be induced

by such a strategy. Consider any outcome π = s0s1s2 . . . consistent with it.

We claim that for any position j along this play, there exists a position j + l,

with l ≤ lmax = (|S| − 1) · (1 + |S| ·W ), such that the sum of weights over the

sequence ρ = sj . . . sj+l is non-negative. Clearly, if it is the case, then objective

FixWMPG(v, lmax) is satisfied and so is objective BndWMPG(v). Consider the

cycle decomposition AC1C2 . . . CnB of this sequence obtained as follows. We push

successively s0, s1, . . . onto a stack, and whenever we push a state that is already

in the stack, a simple cycle is formed that we remove from the stack and append

to the cycle decomposition. The sequence ρ is decomposed into an acyclic part

(A ∪ B) of length5 at most (|S| − 1) and total sum at least −(|S| − 1) ·W and

simple cycles of total sum at least 1 and length at most |S|. Given the window

size lmax, we have at least (|S| − 1) ·W simple cycles in the cycle decomposition.

Hence, the total sum over ρ is at least zero, which proves our point.

Assertion (c). Consider a play π ∈ DirBndWTPG(0). Using the same de-

composition argument as for (a), we have that the sequence of total sums takes

infinitely often values at least equal to zero. Thus the limit of this sequence

of moments bounds from below the limit of the sequence of suprema and is at

least equal to zero, which shows that the supremum total-payoff objective is also

satisfied by play π.

Assertion (d). In one-dimension games, the value of the total-payoff (i.e., the

largest threshold for which P1 has a winning strategy) is ∞ if and only if the

value of mean-payoff is strictly positive [GS09]. Hence, we apply the argument

of (b), further noticing that the window open in position j is closed in at most

lmax steps for any j ≥ 0, which is to say that the direct objective is satisfied.

5The length of a sequence is the number of edges it involves.
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For the fixed window mean-payoff problem, we establish an algorithm that runs in

time polynomial in the size of the game and in the size of the window and we show

that memory is needed for both players. Note that this is in contrast to the mean-

payoff threshold problem, where P2 is memoryless even in the multi-dimension

case (cf. Table 8.1 and Table 8.2). Moreover, the fixed window problem is shown

to be P-hard even for polynomial window sizes.

For the bounded window mean-payoff problem, we prove equivalence with the

fixed window problem for size (|S| − 1) · (|S| ·W + 1), i.e., this window size is

sufficient to win if possible. The bounded window problem is then shown to be

in NP ∩ coNP and at least as hard as mean-payoff games.

We conclude by adapting these results to the direct variants of the objectives.

This chapter is based on results published together with Chatterjee, Doyen

and Raskin [CDRR13a,CDRR13b].
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9.1 Fixed Window

9.1.1 Algorithm

Given a one-dimension game G = (S1, S2, E, w) and a window size lmax ∈ N0, we

present an iterative algorithm FWMP (Alg. 9.1) to compute the winning states

of P1 for the objective FixWMPG(0, lmax).

Algorithm 9.1 FWMP(G, lmax)

Require: G = (S1, S2, E, w) and lmax ∈ N0

Ensure: W is the set of winning states for P1 for FixWMPG(0, lmax)

1: n := 0 ; W := ∅
2: repeat
3: Wn

d := DirectFWMP(G, lmax)

4: Wn
attr := AttrP1

G (Wn
d ) {attractor for P1}

5: W := W ∪Wn
attr ; G := G � (S \W ) ; n := n+ 1

6: until W = S or Wn−1
attr = ∅

7: return W

Initially, all states are potentially losing for P1. The algorithm iteratively

declares states to be winning, removes them, and continues the computation on

the remaining subgame as follows.

In every iteration, i) algorithm DirectFWMP computes the set of states Wd

from which P1 can win the direct fixed window objective; ii) it computes the

attractor to Wd; and then proceeds to the next iteration on the remaining sub-

game. States of the computed set Wd are obviously winning for the fixed window

objective. Thanks to the prefix-independence of the fixed window objective, the

attractor to Wd is also winning. Since P2 must avoid entering this attractor, P2

must restrict his choices to stay in the subgame, and hence we iterate on the

remaining subgame. Thus states removed over all iterations are winning for P1.

This sequence of of steps is essentially the computation of a greatest fixed point.

The key argument to establish correctness is as follows: when the algorithm

stops, the remaining set of states W is such that P2 can ensure to stay in W

and falsify the direct fixed window objective by forcing the appearance of one

open window larger than lmax. Since he stays in W , he can repeatedly use this

strategy to falsify the fixed window objective. Thus the remaining set W is
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winning for P2, and the correctness of the algorithm follows.

The main idea of algorithm DirectFWMP (Alg. 9.2) is that to win the di-

rect fixed window objective, P1 must be able to repeatedly win the good window

objective, which consists in ensuring a non-negative sum in at most lmax steps.

Thus the algorithm consists in computing a least fixed point.

Algorithm 9.2 DirectFWMP(G, lmax)

Require: G = (S1, S2, E, w) and lmax ∈ N0

Ensure: Wd is the set of winning states for P1 for DirFixWMPG(0, lmax)

1: Wgw := GoodWin(G, lmax)

2: if Wgw = S or Wgw = ∅ then
3: Wd := Wgw

4: else
5: Wd := DirectFWMP(G �Wgw, lmax)

6: return Wd

A winning strategy of P1 in a state s is thus a strategy that enforces a non-

negative sum and, as soon as the sum turns non-negative (in some state s′),

starts doing the same from s′. It is important to start again immediately as it

ensures that all suffixes along the path from s to s′ also have a non-negative

sum thanks to the inductive property of windows. That is, for any state s′′ in

between, the window from s′′ to s′ is closed.

Algorithm 9.3 GoodWin(G, lmax)

Require: G = (S1, S2, E, w) and lmax ∈ N0

Ensure: Wgw is the set of winning states for GWG(0, lmax)

1: for all s ∈ S do
2: C0(s) := 0

3: for all i ∈ {1, . . . , lmax} do
4: for all s ∈ S1 do
5: Ci(s) := max(s,s′)∈E{w((s, s′)) + Ci−1(s′)}
6: for all s ∈ S2 do
7: Ci(s) := min(s,s′)∈E{w((s, s′)) + Ci−1(s′)}
8: return Wgw := {s ∈ S | ∃ i, 1 ≤ i ≤ lmax, Ci(s) ≥ 0}

The set of states from which P1 can ensure winning for the good window

objective is computed by subroutine GoodWin (Alg. 9.3). Intuitively, given a

state s ∈ S and a number of steps i ≥ 1, the value Ci(s) is computed iteratively
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(from Ci−1(s)) and represents the best sum that P1 can ensure from s in exactly i

steps. That is, for all s ∈ S, we have that C0(s) = 0 and

Ci≥1(s) =

max(s,s′)∈E{w((s, s′)) + Ci−1(s′)} if s ∈ S1,

min(s,s′)∈E{w((s, s′)) + Ci−1(s′)} if s ∈ S2.

Hence, the set of winning states for P1 is the set of states for which there exists

some i, 1 ≤ i ≤ lmax such that Ci(s) ≥ 0. We state the correctness of GoodWin

in Lemma 9.1.

Lemma 9.1. Algorithm GoodWin computes the set of winning states of P1

for the good window objective in time O (|E| · lmax · V ), with V = dlog2W e, the

length of the binary encoding of weights.

Proof. Let Wg ⊆ S denote the winning states for GWG(0, lmax). We prove the

following: (a) s ∈ Wg ⇒ s ∈ GoodWin(G, lmax); (b) s ∈ GoodWin(G, lmax)⇒
s ∈ Wg.

We first consider case (a). From s, there exists a strategy of P1 that enforces

a non-negative sum after l steps, for some l, 1 ≤ l ≤ lmax. Hence, the value Cl(s)

computed by the algorithm is non-negative and s ∈ GoodWin(G, lmax).

Case (b). Assume s ∈ GoodWin(G, lmax). By definition of the algorithm

GoodWin, there exists some l ≤ lmax such that Cl(s) is positive. Consequently,

taking the choice of l edges that achieves the maximum value defines a strategy

for P1 that ensures a positive sum after l steps, hence closing the window started

in s. That is, s ∈ Wg.

It remains to discuss the complexity of GoodWin. Clearly, it takes a num-

ber of elementary arithmetic operations which is bounded by O (|E| · lmax) to

compute the set Wgw as each edge only needs to be visited once at each step i.

Each elementary arithmetic operation takes time linear in the number of bits V

of the encoding of weights, that is, logarithmic in the largest weight W . Hence,

the time complexity of GoodWin is O (|E| · lmax · V ).

Thanks to the previous lemma, we establish the algorithm solving the direct

fixed window objective.
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Lemma 9.2. Algorithm DirectFWMP computes the winning states of P1 for

the direct fixed window mean-payoff objective in time O (|S| · |E| · lmax · V ), with

V = dlog2W e, the length of the binary encoding of weights.

Proof. Let W be the set of winning states for DirFixWMPG(0, lmax), i.e.,

s ∈ W ⇔ ∃ λ1 ∈ Λ1, ∀λ2 ∈ Λ2, OutsG(s, λ1, λ2) ∈ DirFixWMPG(0, lmax).

We first prove (a) s ∈ DirectFWMP(G, lmax)⇒ s ∈ W, and then (b) s ∈ W ⇒
s ∈ DirectFWMP(G, lmax). First of all, notice that DirectFWMP exactly

computes the set of states Wd such that a non-negative sum is achievable in at

most lmax steps, using only states from which a non-negative sum can also be

achieved in at most lmax steps (hence the property is defined recursively).

Consider case (a). Let s ∈Wd. Consider the following strategy of P1.

1. Play the strategy prescribed by GoodWin until a non-negative sum is

reached. This is guaranteed to be the case in at most lmax steps. Let s′ be

the state that is reached in this manner.

2. By construction of Wd, we have that s′ ∈ Wd. Thus, play the strategy

prescribed by GoodWin in s′.

3. Continue ad infinitum.

We denote this strategy by λ1 and claim it is winning for the direct fixed

window objective, i.e., s ∈ W. Indeed, consider any strategy of P2 and let

π = OutsG(s, λ1, λ2). We have π = σ1σ2 . . . σm1σm1+1 . . . σm2σm2+1 . . . with

∀ j ≥ 0, σj ∈ S and σ1 = σm0 = s, such that all sequences ρ(n) = σmn . . . σmn+1

are of length at most lmax + 1 (lmax steps) and such that all strict prefixes of

ρ(n) are strictly negative and all suffixes of ρ(n) are positive. Indeed, starting

in some state σmn , the strategy λ1 keeps a memory of the current sum and tries

to reach a non-negative value (using the strategy prescribed by GoodWin). As

soon as such a value is reached in a state σmn+1 , the memory of the current sum

kept by the strategy is reset to zero and the process is restarted. That way,

for all j, mn ≤ j < mn+1, we have that the sum over the sequence from σj to

σmn+1 is non-negative, hence all intermediate windows are also closed. Thus, the

window property is satisfied everywhere along the play π, starting in σ1 = s,

which proves that s ∈ W.
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Case (b). Let λ1 be a winning strategy of P1 for DirFixWMPG(0, lmax). For

any strategy λ2 of P2, the outcome is a play π = σ1σ2 . . . with σ1 = s such

that the window property is satisfied from all states. In particular, this implies,

that for all σj , strategy λ1 enforces a positive sum in at most lmax steps, that is,

σj ∈ GoodWin(G, lmax). Since it is the case for all states σj , we have that P1

has a strategy to ensure a positive sum in at most lmax steps using only states

from which this property is ensured. Therefore, we conclude that s ∈Wd.

Again, the number of calls is at most the number of states |S|. Let CGW

denote the complexity of algorithm GoodWin. Then, the time complexity of

algorithm DirectFWMP is O (|S| · CGW).

Finally, we prove correctness of the algorithm for the fixed window problem.

Lemma 9.3. Algorithm FWMP computes the set of winning states of P1 for

the fixed window mean-payoff objective in time O
(
|S|2 · |E| · lmax · V

)
, with V =

dlog2W e, the length of the binary encoding of weights.

Proof. Let W ⊆ S be the set of states that are winning for FixWMPG(0, lmax),

i.e.,

s ∈ W ⇔ ∃λ1 ∈ Λ1, ∀λ2 ∈ Λ2, OutsG(s, λ1, λ2) ∈ FixWMPG(0, lmax).

Note that since we set the threshold to be 0 (w.l.o.g.), we may ignore the division

by the window size l in eq. (8.1). We claim that FWMP(G, lmax) = W. The

proof is in two parts: (a) s ∈ FWMP(G, lmax)⇒ s ∈ W, and (b) s ∈ W ⇒ s ∈
FWMP(G, lmax).

We begin with (a). Let (Wd)
n≥0 and (Wattr)

n≥0 be the finite sequences of

sets computed by the iterative algorithm. We have that FWMP(G, lmax) =⋃
n≥0W

n
attr. For any n, n′ such that n 6= n′, we have that Wn

attr ∩Wn′
attr = ∅ and

Wn
d ∩Wn′

d = ∅. Moreover, for all n ≥ 0, Wn
d ⊆Wn

attr. Let s ∈ FWMP(G, lmax).

There exists a unique n ≥ 0 such that s ∈ Wn
attr. By construction, from s, P1

has a strategy to reach and stay in Wn
d ∪W

n−1
attr ∪W

n−2
attr ∪ . . .W 0

attr and thus s is

winning in the subgame G � (S \Wn−1
attr ). However, P2 still has the possibility to

leave Wn
d and reach the set Wn−1

attr ∪W
n−2
attr ∪ . . .W 0

attr. Since the sequence is finite

and P2 cannot leave W 0
d , we have that at some point, any outcome is trapped in

some set Wm
d , 0 ≤ m ≤ n, in which P1 wins the direct fixed window objective.
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Let x be the length of the finite prefix outside Wm
d . The outcome satisfies the

fixed window mean-payoff objective for i = x. Therefore, we have that s ∈ W.

Now consider (b). Let s ∈ W be a winning state for FixWMPG(0, lmax). We

claim that s ∈ FWMP(G, lmax). Suppose it is not the case and consider the se-

quences (Wd)
n≥0 and (Wattr)

n≥0 as before. We have that for all n ≥ 0, s 6∈Wn
attr.

In particular, P2 can force staying in Strap = S \
⋃
n≥0W

n
attr when starting in s.

Since the algorithm has stopped, we have DirectFWMP(G � Strap, lmax) = ∅.
As algorithm DirectFWMP is correct, from all states of Strap, P2 has a strat-

egy to spoil the direct fixed window game, i.e., P2 can force a sequence of states

such that there exists a position j along it for which the window starting in j

stays open for at least (lmax + 1) steps, and such that this sequence remains

in Strap. Therefore, P2 can force staying in Strap and seeing infinitely often such

sequences, hence P1 is losing for the fixed window mean-payoff objective, which

contradicts the fact that s ∈ W.

Finally, consider the complexity of the recursive algorithm FWMP. Notice

that at least one state is declared winning at each iteration. The number of calls

is thus at most the number of states |S|. Computing the attractor is linear in the

number of edges |E| ≤ |S|2. The overall complexity is thus O (|S| · (|E|+ CDW)),

where CDW is the complexity of the DirectFWMP algorithm.

9.1.2 Memory and Complexity Bounds

Thanks to the correctness of algorithm FWMP, we also deduce linear upper

bounds (in |S| · lmax) on the memory needed for both players (Lemma 9.4).

Indeed, let s ∈ S be a winning state for P1. A winning strategy λ1 for P1 is to (a)

reach the set of states Wn
d that are winning for the direct fixed window objective

in the subgame restricted to states Wn
d \W

n−1
attr , then (b) repeatedly play the

strategy prescribed by GoodWin in this subgame (i.e., enforce a non-negative

sum in less than lmax steps, see proof of Lemma 9.2). If P2 leaves for a lower

subgame restricted to Wn′
attr, n

′ < n, the strategy is to start again part (a) in this

subgame. Part (a) is memoryless as it uses a classical attractor strategy. Part (b)

requires to consider, for each state s′ in the set computed by DirectFWMP, a

number of memory states which is bounded by lmax, as the only memory needed

is to select the corresponding successor state that will maximize the Cl(s
′) value,

for all possible values of l, the number of steps remaining to close a window.
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Similarly, P2 needs to be able to prevent the closing of a window repeatedly, and

therefore also possibly needs lmax memory states for each state of the game.

To illustrate that memory is needed by both players, consider the following

examples. First, consider a game where all states belong to P1 and such that the

play starts in a central state s and in s, there are three outgoing edges, toward

three simple cycles C1, C2, and C3. All other states have only one outgoing

edge. Cycle C1 is composed of six edges of successive weights 3, 3, 5,−1,−1

and −5. Cycle C2 is 7,−1 and −9. Cycle C3 is 5, 5 and −11. The objective is

FixWMPG(0, lmax = 4). Clearly, from some point on, a winning strategy of P1 has

to infinitely alternate between cycles in the following way: (C1C2C3)ω. Any other

alternation leads to a bad window appearing infinitely often: hence, the decision

of P1 in s depends on the remaining number of steps to ensure a good window.

Second, consider a similar game but with all states belonging to P2. Again, the

initial state is central and there are two cycles C1 and C2 such that C1 is 1 followed

by −1, and C2 is −1,−1 and 2. The objective is FixWMPG(0, lmax = 3). If P2 is

memoryless, both possible strategies induce a winning play for P1. On the other

hand, if P2 is allowed to alternate, he can choose the play (C1C2)ω which will be

losing for P1 as the window −1,−1,−1 will appear infinitely often.

Lemma 9.4. In one-dimension games with a fixed window mean-payoff objec-

tive, memory is needed by both players and linear memory in the number of states

times the window size is sufficient.

Through Lemma 9.3, we have shown that the fixed window problem admits a

polynomial (in |S|, V and lmax) algorithm. In Lemma 9.5, we prove that even for

window size lmax = 1 and weights {−1, 1}, the problem is P-hard. This is via a

reduction from reachability games. By making the target states absorbing with

a self-loop of weight 1, and giving weight −1 on all other edges, we obtain the

reduction, as reaching a target state is now the only way to ensure that windows

close.

Lemma 9.5. In two-player one-dimension games, the fixed window mean-payoff

problem is P-hard, even for lmax = 1 and weights {−1, 1}.

Proof. Let Gr = (S1, S2, E) be an unweighted game with a reachability objective

asking to visit (at least once) a state of the set R ⊆ S. We build the game
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G = (S1, S2, E
′, w) by (a) making the target states absorbing with a self-loop

of weight 1, i.e., for all s ∈ R, we have (s, s) ∈ E′ and w((s, s)) = 1, and (b)

putting weight −1 on all other edges, i.e., for all edge (s, t) ∈ E such that s 6∈ R,

we have (s, t) ∈ E′ and w((s, s)) = −1. We claim that P1 has a winning strategy

in Gr from a state s ∈ S if and only if he has a winning strategy for the objective

FixWMPG(0, lmax = 1) in G from s ∈ S. Indeed, it is clear that any outcome

that never reaches the target set is such that all windows stay indefinitely open,

and conversely, an outcome that reaches this set after n steps is winning for the

fixed window objective with i = n. Since deciding the winner in reachability

games is P-complete [Bee80, Imm81], this concludes our proof.

9.1.3 Wrap-up

We sum up the complexity analysis of the fixed window problem in Theorem 9.6.

Theorem 9.6. In two-player one-dimension games, (a) the fixed arbitrary win-

dow mean-payoff problem is decidable in time O
(
|S|2 · |E| · lmax · V

)
, with V =

dlog2W e, the length of the binary encoding of weights, and (b) the fixed polyno-

mial window mean-payoff problem is P-complete. In general, both players require

memory, and memory of size linear in |S| · lmax is sufficient.

9.2 Bounded Window

9.2.1 Algorithm

In the following, we focus on the bounded window mean-payoff problem for two-

player one-dimension games. We start with two technical lemmas related to

the classical supremum total-payoff threshold problem. Using these lemmas, we

establish an NP∩ coNP algorithm to solve the bounded window problem and, as

a corollary, we get an interesting bound on the window size needed to win the

fixed window problem if possible.

The first technical lemma (Lemma 9.7) states that if P1 has a strategy to

win the supremum total-payoff objective from some state sinit, then he can force

a non-negative sum from this state in at most (|S| − 1) · (|S| ·W + 1) steps, i.e.,

he wins the good window objective for this window size.
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Lemma 9.7. Let G = (S1, S2, E, w) be a two-player one-dimension game. If P1

has a strategy to win for objective TotalSupG(0) from initial state sinit ∈ S,

then P1 also has a strategy to win for the good window objective GWG(0, lmax)

from sinit for lmax = (|S| − 1) · (|S| ·W + 1).

This result is obtained by considering a memoryless winning strategy of P1

for the total-payoff and the decomposition in simple cycles of any consistent

outcome where (a) either simple cycles are strictly positive, or (b) they are of

value zero but preceded by a non-negative prefix.

Proof. Let λ1 ∈ ΛPM1 be a memoryless winning strategy of P1 for TotalSupG(0).

Our claim is that for all possible outcome π consistent with λ1 starting in the

initial state sinit, there exists a prefix ρ of π of size at most lmax such that the

total sum of weights over ρ is non-negative. Let π be any outcome consistent

with λ1 and ρ1 its prefix of length (|S| − 1) · (|S| ·W + 1). Consider the cycle

decomposition (see the proof of Lemma 8.3) of ρ1: A, C1, C2, . . . , Cm,B, with A
the prefix before the first cycle and B the suffix after the last cycle in ρ1. The

total length of the acyclic part is |A|+ |B| < |S|−1. We claim that there exists a

prefix ρ of ρ1 such that the total sum of weights over ρ is non-negative. Consider

the following arguments:

1. No cycle C in {C1, . . . , Cm} can be strictly negative. Otherwise, since λ1

is memoryless, P2 could force cycling in such a cycle forever and the play

would be losing for the supremum total-payoff objective, which contra-

dicts λ1 being a winning strategy.

2. Assume that there exists a cycle C in {C1, . . . , Cm} such that the sum of

weights over this cycle is zero. We define the high point of a cycle as the

first state where the sum from the start of the cycle takes its highest value.

Then, the prefix ρ of ρ1 up to this high point is non-negative and we are

done. Indeed, assume it is not the case. Then, the running sum over the

outcome π is strictly negative when reaching the high point, and stays

strictly negative in all positions along the cycle C, by definition of the high

point. Therefore, P2 can force cycling forever in C since λ1 is memoryless

and the outcome becomes losing for the total-payoff objective.

3. So assume there are only strictly positive cycles in the cycle decomposition

of ρ1, that is, they all have a total sum of value at least 1. The total sum
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over C1, . . . , Cm is at least equal to m. Since each cycle is of length at

most |S| and A ∪ B is of length at most |S| − 1, we have that the number

of cycles m in the cycle decomposition of ρ1 is at least

((|S| − 1) · (|S| ·W + 1)− (|S| − 1)) / |S| = (|S| − 1) ·W.

Given that the total sum over prefix A is at least −(|S|−1) ·W , we obtain

that ρ = AC1 C2 . . . Cm is the desired prefix with a non-negative total sum,

and its length is bounded by (|S| − 1) · (|S| ·W + 1).

This concludes our proof.

The second technical lemma (Lemma 9.8) shows that if P2 has a strategy to

ensure that the supremum total-payoff from some state sinit is strictly negative,

then he has a memoryless strategy to do so and any outcome π starting in sinit

and consistent with this strategy is such that the direct bounded window mean-

payoff objective is not satisfied.

Lemma 9.8. Let G = (S1, S2, E, w) be a two-player one-dimension game. If P2

has a spoiling strategy for objective TotalSupG(0) from initial state sinit ∈ S,

then P2 has a strategy λ2 ∈ ΛPM2 to ensure that for all outcome π = σ0σ1 . . .

consistent with λ2 starting in σ0 = sinit, there exists a position i ≥ 0 such that

for all window sizes l ≥ 1, the total sum of weights on the window from σi to

σi+l is strictly negative.

Proof. By contradiction. Let λ2 ∈ ΛPM2 be a memoryless spoiling strategy for

objective TotalSupG(0) from sinit ∈ S. Let π be a consistent outcome and assume

that it does not respect the lemma, i.e., for all positions i ≥ 0, there exists a

window size l ≥ 1 such that the window from σi to σi+l is non-negative. Then

the play π can be decomposed as a sequence of finite windows of non-negative

weights. Hence, the total sum from σ0 = sinit takes infinitely often values at least

equal to zero and the limit of its suprema is non-negative. This is in contradiction

to λ2 being a winning strategy for P2.

Thanks to Lemma 9.7 and Lemma 9.8, we are now able to establish an

NP ∩ coNP algorithm (Alg. 9.4) to solve the bounded window mean-payoff prob-

lem on two-player one-dimension games. Lemma 9.9 states its correctness.
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Algorithm BoundedProblem (Alg. 9.4) first computes via a subroutine

named UnbOpenWindow the set of states from which P2 can force the visit of

a position such that the window opening in this position never closes.

Clearly, to prevent P1 from winning the bounded window problem, P2 must

be able to do so repeatedly as the prefix-independence of the objective other-

wise gives the possibility to wait that all such bad positions are encountered

before taking the windows into account. Therefore, the states that are not in

UnbOpenWindow(G), as well as their attractor, are winning for P1. Since the

choices of P2 are reduced because of the attractor of P1 being declared winning,

we compute in several steps, adding new states to the set of winning states for P1

up to stabilization.

Algorithm 9.4 BoundedProblem(G)

Require: Game G = (S1, S2, E, w)

Ensure: Wbp is the set of winning states for P1 for the bounded window mean-payoff
problem

Wbp := ∅
L := UnbOpenWindow(G)

while L 6= S \Wbp do

Wbp := AttrP1

G (S \ L)

L := UnbOpenWindow
(
G � (S \Wbp)

)
return Wbp

Algorithm 9.5 UnbOpenWindow(G)

Require: Game G = (S1, S2, E, w)

Ensure: L is the set of states from which P2 can force a position for which the window
never closes

p := 0 ; L0 := ∅
repeat

Lp+1 := Lp ∪ AttrP2

G�(S\Lp)

(
NegSupTP

(
G � (S \ Lp)

))
p := p+ 1

until Lp = Lp−1

return L := Lp

Now consider the subroutine UnbOpenWindow (Alg. 9.5). Its correctness

is based on Lemma 9.8. Indeed, it computes the set of states from which P2
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can force a position for which the window never closes. To do so, it suffices to

compute the attractor for P2 of the set of states from which P2 can enforce a

strictly negative supremum total-payoff. Routine NegSupTP denotes a call to

an oracle solving the total-payoff problem, which is known to belong to NP ∩
coNP [GS09]. Precisely, NegSupTP(G) =

{
s ∈ S | ∃λ2 ∈ Λ2, ∀λ1 ∈ Λ1, ∀π ∈

OutsG(s, λ1, λ2), TP(π) < 0
}

. Again, we compute the fixed point of the sequence

as the choices of P1 are reduced at each iteration.

The main idea of the correctness proof is that from all states in Wbp, P2 has

an infinite-memory winning strategy which is played in rounds, and in round n

ensures an open window of size at least n by playing the total-payoff strategy

of P2 for at most n · |S| steps, and then proceeds to round (n+ 1) to ensure an

open window of size (n+ 1), and so on. Hence, windows stay open for arbitrary

large periods and the bounded window objective is falsified.

Lemma 9.9. Given a two-player one-dimension game G = (S1, S2, E, w), al-

gorithm BoundedProblem computes the set of winning states for P1 for the

bounded window mean-payoff objective of threshold 0 in time O(|S|2 · (|E|+C)),

where C is the complexity of algorithm NegSupTP, i.e., the complexity of com-

puting the set of winning states in a two-player one-dimension supremum total-

payoff game. Thus, algorithm BoundedProblem is in NP ∩ coNP.

Proof. We show that for all states in Wbp = BoundedProblem(G), there exists

a winning strategy of P1, whereas for all states in S \Wbp, there exists one of P2.

Consider a state s ∈Wbp. Consider (Lm)0≤m≤n, the finite sequence of sets L

that are computed by BoundedProblem, with L0 = UnbOpenWindow(G);

and (Wm
bp )0≤m≤n, the corresponding finite sequence of sets Wbp where W 0

bp = ∅
is empty and Wn

bp = Wbp is the returned set of winning states. For all m′,m,

0 ≤ m′ < m ≤ n, we have that Wm
bp ⊃ Wm′

bp and Lm ⊂ Lm
′
. By construction,

there exists m, 1 ≤ m ≤ n such that s ∈Wm
bp = AttrP1

G (S\Lm−1). In the subgame

G � ((S \Lm−1) \Wm−1
bp ), P1 has a memoryless [GZ04] winning strategy for the

supremum total-payoff objective. Hence, consider the strategy λ1 of P1 which is

to reach the set (S \Lm−1) (in at most |S| steps) and then play the memoryless

total-payoff strategy in the subgame. It is possible for P2 to force leaving this

subgame for a lower subset Wm′
bp ⊂ Wm

bp with m′ < m but since the sequence is

finite, any outcome is ultimately trapped in some subgame G � ((S\Lm′′)\Wm′′
bp ).

Therefore, repeating the strategy λ1 in each subgame ensures that after a finite
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number of steps (and hence a finite number of positions for which windows

never close), a bottom subgame G � ((S \ Lm′′) \ Wm′′
bp ) is reached and, by

Lemma 9.7, strategy λ1 ensures satisfaction of the good window objective for

lmax = (|S| − 1) · (|S| ·W + 1) in this subgame. Moreover, since this strategy

never visits states out of the bottom subgame, it ensures an inductive window

from every state, regardless of the past. Hence, all intermediate windows are also

closed and this strategy is winning for FixWMPG(0, lmax) ⊆ BndWMPG(0) from

the initial state s. The states that are only visited finitely often before reaching

the bottom subgame have no consequence thanks to the prefix-independence of

the bounded window mean-payoff objective.

As for P2, consider a state s ∈ S \ Wbp. Consider (Lp)0≤p≤q, the finite

sequence of sets L that are computed in the last call to UnbOpenWindow

by BoundedProblem, with L0 = ∅. We define the sequences (Np)1≤p≤q

and (Ap)1≤p≤q as Np = NegSupTP(G � (S \ Lp−1)) and Ap = Lp \ Lp−1 =

AttrP2

G�(S\Lp−1)(Np). We have that s ∈ Lp for some p between 1 and q. An infi-

nite memory winning strategy for P2 is played in rounds. In round n, P2 acts

as follows. (a) If the current state is in Ap, play the attractor to Np and then

play the optimal strategy for the supremum total-payoff in Np to ensure that no

window will have a non-negative sum for n steps. (b) P1 can leave the set Ap

for some lower set Ap′ , 1 ≤ p′ < p. If so, play the attractor to Np′ and continue.

Ultimately, any outcome is trapped in some set Np′′ \ Ap′′−1, with 1 ≤ p′′ ≤ q

and A0 = ∅, as in N1, P1 cannot leave. There P1 cannot prevent the window

being strictly negative for n steps. When such a window has been enforced for

n steps, move to round n + 1 and start again. This strategy ensures that the

bounded window problem is not satisfied as, infinitely often, windows stay open

for arbitrary large periods along any outcome.

Finally, we discuss the complexity of algorithm BoundedProblem. Let C
be the complexity of routine NegSupTP, that is, the complexity of solving a one-

dimension supremum total-payoff game. The total complexity of subalgorithm

UnbOpenWindow is O(|S| · (|E| + C)) as the sequence of computations is of

length at most |S| and each computation takes time O(|E| + C). The overall

complexity of BoundedProblem is thus O(C + |S| · (|E| + |S| · (|E| + C))) =

O(|S|2 · (|E|+ C)).

An interesting corollary of Lemma 9.7 and Lemma 9.9 is that sets of winning
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states coincide for objectives FixWMPG(0, lmax = (|S| − 1) · (|S| ·W + 1)) and

BndWMPG(0), therefore proving NP ∩ coNP-membership for the subset of fixed

window problems with size at least lmax (hence an algorithm independent of the

window size whereas Lemma 9.2 gives an algorithm which is polynomial in it).

Corollary 9.10. In two-player one-dimension games, the fixed window mean-

payoff problem is in NP∩ coNP for window size at least equal to (|S| − 1) · (|S| ·
W + 1).

9.2.2 Memory and Complexity Bounds

Algorithm BoundedProblem (Lemma 9.9) gives memoryless strategies for P1

(attractor + memoryless strategy for total-payoff) and infinite-memory strategies

for P2 (delaying the closing of windows for increasing number of steps each round)

in one-dimension bounded window mean-payoff games. Lemma 9.11 states that

infinite-memory strategies are necessary for P2, as discussed in Ex. 8.2: P2 cannot

use the zero cycle forever, but he must cycle long enough to defeat any finite

window. Hence, its strategy needs to cycle for longer and longer, which requires

infinite memory.

Lemma 9.11. In one-dimension games with a bounded window mean-payoff ob-

jective, (a) memoryless strategies suffice for P1, and (b) infinite-memory strate-

gies are needed for P2 in general.

In Lemma 9.14, we give a polynomial reduction from mean-payoff games to

bounded window mean-payoff games, therefore showing that a polynomial algo-

rithm for the bounded window problem would solve the long-standing question

of the P-membership of the mean-payoff threshold problem. The proof relies on

technical lemmas providing intermediary reductions. First, we prove that given

a game G, deciding if P1 has a strategy to ensure a non-negative mean-payoff can

be reduced to deciding if P1 has a strategy to ensure a strictly positive mean-

payoff when weights are shifted positively by a sufficiently small ε (Lemma 9.12).

Second, we apply Lemma 8.3 on the shifted game to prove that winning this ob-

jective implies winning the bounded window problem. This gives one direction

of the reduction. For the other one, we show that given a game G, if P1 has a

strategy to win the bounded window problem when weights are shifted positively
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by a sufficiently small ε, he has one to win the mean-payoff threshold problem

in G.

We define the following notation: given a two-player one-dimension game

G = (S1, S2, E, w) and ε ∈ Q, let G+ε = (S1, S2, E, w+ε) be the game obtained

by shifting all weights by ε, that is, for all e ∈ E, w+ε(e) = w(e) + ε.1

Lemma 9.12. For all one-dimension game G = (S1, S2, E, w) with integer

weights, for all ε, 0 < ε < 1/|S|, for all initial state s ∈ S, P1 has a strat-

egy to ensure a non-negative mean-payoff in G if and only if P1 has a strategy

to ensure a strictly positive mean-payoff in G+ε.

Proof. Consider a memoryless winning strategy of P1 in G from initial state

s ∈ S. All simple cycles in consistent outcomes have a sum of weights at least

equal to zero. Hence, the corresponding outcome in G+ε is such that all simple

cycles of length n have sums at least equal to n · ε > 0, which proves that the

strategy is also winning in G+ε.

Consider a memoryless winning strategy of P2 in G from initial state s ∈ S.

All simple cycles in consistent outcomes have a strictly negative sum of weights,

that is the sum is at most equal to −1. Hence, the corresponding outcome in G+ε

is such that all simple cycles of length n have sums at most equal to −1 + n · ε.
Since n ≤ |S| and ε < 1/|S|, we have that the sum is strictly negative, which

proves that the strategy is also winning in G+ε.

By determinacy of mean-payoff games, we obtain the claim.

Lemma 9.13. For all one-dimension game G = (S1, S2, E, w) with integer

weights, for all ε, 0 < ε < 1/|S|, for all initial state s ∈ S, if P1 has a strategy

to win the bounded window mean-payoff problem in G+ε, then P1 has a strategy

to win the mean-payoff threshold problem in G.

Proof. Assume there exists a winning strategy of P1 for the bounded window

mean-payoff problem in G+ε from initial state s ∈ S. By Lemma 8.3, asser-

tion (a), we have that this strategy ensures a non-negative mean-payoff in G+ε.

By shifting weights by −ε, this can be equivalently expressed as (Prop. A) the

existence of a strategy of P1 ensuring a mean-payoff at least equal to −ε in the

game G.

1Note that w+ε can be transformed into an integer valued function without changing the
answers to the considered decision problems.
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For sufficiently small values of ε, that is for 0 < ε < 1/|S|, we claim that

(Prop. A) implies that (Prop. B) P1 has a strategy to ensure a non-negative

mean-payoff in G. By contradiction, assume this implication is false, that is we

have that (Prop. A) is true and (Prop. B) is not. It implies the following.

◦ (Prop. A) is true: P1 has a memoryless strategy to ensure that the mean-

payoff is at least equal to −ε, i.e., strictly greater than −1/|S|.

◦ (Prop. B) is false: P2 has a memoryless strategy to ensure that all simple

cycles in consistent outcomes have a sum of weights at most −1. Hence,

this strategy ensures a mean-payoff at most equal to −1/|S|.

Obviously, it is not possible to have both (Prop. A) true and (Prop. B) false for

any initial state s ∈ S, hence proving our claim.

Lemma 9.14. The one-dimension mean-payoff problem reduces in polynomial

time to the bounded window mean-payoff problem.

Proof. Let G = (S1, S2, E, w) be a game with integer weights, and sinit ∈ S be

the initial state. Let ε be any rational value such that 0 < ε < 1/|S|. We claim

that the answer to the mean-payoff threshold problem in G is Yes if and only if

the answer to the bounded window mean-payoff problem in G+ε is Yes.

The left-to-right implication is proved in two steps. Assume the answer to

the mean-payoff threshold problem in G is Yes. First, by Lemma 9.12, we have

that P1 has a strategy to ensure a strictly positive mean-payoff in G+ε. Second,

by Lemma 8.3, assertion (b), this implies that the answer to the bounded window

mean-payoff problem in G+ε is Yes.

The right-to-left implication is obtained by straightforward application of

Lemma 9.13.

Remark 9.15. The reduction established in Lemma 9.14 cannot be reversed in

order to solve bounded window mean-payoff games via classical mean-payoff

games. Indeed, the reduction relies on the absence of simple cycles of value

zero in the game G+ε, which is not verified in general if the reduction starts

from arbitrary bounded window mean-payoff games. Indeed it does not suffice

to shift the weights symmetrically by −ε to obtain an equivalent mean-payoff

game, as witnessed by Fig. 8.2, for which any negative shift gives a game losing
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for the mean-payoff threshold problem, while the bounded window problem on

the original game is satisfied. C

9.2.3 Wrap-up

We close our study of two-player one-dimension games with Theorem 9.16.

Theorem 9.16. In two-player one-dimension games, the bounded window mean-

payoff problem is in NP ∩ coNP and at least as hard as mean-payoff games.

Memoryless strategies suffice for P1 and infinite-memory strategies are required

for P2 in general.

9.3 On Direct Objectives

Through this chapter, we have studied the prefix-independent versions of the

objectives defined in Sect. 8.2. In this section, we briefly argue that similar

complexity results are obtained for the direct variants (Table 9.1), by slight

modifications of the presented proofs. Notice that memory requirements however

change, as it is now sufficient to force one sufficiently long (for the fixed problem)

or never closing (for the bounded problem) window to make an outcome losing.

one-dimension

complexity P1 mem. P2 mem.

direct fixed
P-c.

polynomial window mem. req.

direct fixed
P(|S|, V, lmax)

≤ linear(|S| · lmax)

arbitrary window

direct bounded
NP ∩ coNP memoryless linear

window problem

Table 9.1: Complexities and memory requirements for the direct objectives in
one-dimension games. Differences with the prefix-independent objectives are in
bold (c. for complete).

Direct fixed window problem. The polynomial algorithm in the size of

the game and the size of the window is given by Lemma 9.2. For polynomial
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windows, we obtain P-hardness using the proof of Lemma 9.5 and window size

lmax = 2 · |S|, as if P1 can win the reachability game, then he has a strategy to

do it in at most |S| steps. Lemma 9.4 extends to direct objectives, and provides

linear upper bounds on memory with the same arguments. In particular, the

provided examples of games require memory for both players when the direct

fixed window objective is considered.

Direct bounded window problem. We obtain an NP ∩ coNP algorithm for

the direct bounded problem by simplifying BoundedProblem (Lemma 9.9)

as follows: BoundedProblem(G) = S \ UnbOpenWindow(G). Indeed, as

the objective is no longer prefix-independent, it is sufficient for P2 to force one

window that never closes to make the play losing. Hence, the attractor of the set

S\L in algorithm BoundedProblem cannot be declared winning for P1. While

memoryless strategies still suffice for P1 (applying the arguments of Lemma 9.9),

winning strategies for P2 do not need infinite memory anymore, but at most

linear memory. Indeed, a winning strategy of P2 is the one described in the

proof of Lemma 9.9, but without taking rounds into account (i.e., the play stays

forever in round one). To illustrate that memoryless strategies still do not suffice

for P2, consider a variation of Fig. 8.3, with the initial state being s2. Clearly, P2

must first take the cycle to s1 then loop forever on s2 to ensure a never closing

window. Corollary 9.10 extends in the direct case and gives the same bound

on the window size. Finally, the reduction of mean-payoff games developed in

Lemma 9.14 carries over to the direct bounded window objective, as the game

with shifted weights is such that the mean-payoff is strictly positive. In which

case, the supremum total-payoff is infinite and Lemma 8.3 applies, implying the

result.
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For the fixed window mean-payoff problem, we first present an EXPTIME algo-

rithm that computes the winning states of P1.

We also establish lower bounds on the complexity of the fixed window prob-

lem: the problem is EXPTIME-hard for arbitrary window sizes (both in the case

of fixed weights and arbitrary dimensions, and in the case of a fixed number of

dimensions and arbitrary weights), whereas it is PSPACE-hard for polynomial

window sizes.

We finally show that exponential memory is both sufficient and necessary in

general for both players, even for polynomial window sizes.

For the bounded window mean-payoff problem, we establish non-primitive-

recursive-hardness.

All these results transfer to the direct variants.

These results were established in joint work with Chatterjee, Doyen and

Raskin [CDRR13a,CDRR13b].
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10.1 Fixed Window

Remark 10.1. Recall the definitions given in Sect. 8.2. Observe that in multi-

dimension games, window objectives do not require that opened windows close

simultaneously. In that sense, it is asynchronous.

Synchronous variants may be interesting to study but some useful properties

are lost in that setting, such as the inductive property on windows. Hence our

techniques cannot be extended straightforwardly. C

10.1.1 Algorithm

We start by providing an EXPTIME algorithm via a reduction from a fixed

window mean-payoff game G = (S1, S2, E, k, w) to an exponentially larger un-

weighted co-Büchi game Gc (where the objective of P1 is to avoid visiting a set

of bad states infinitely often).

Lemma 10.2. The fixed window mean-payoff problem over a multi-dimension

game G reduces in exponential time to the co-Büchi problem on an exponentially

larger game Gc.

Recall that a winning play is such that, starting in some position i ≥ 0, in

all dimensions, all opening windows are closed in at most lmax steps.

We keep a counter of the sum over the sequence of edges and as soon as

it turns non-negative (in at most lmax steps), we reset the sum counter and

start a new sequence (which also must become non-negative in at most lmax

steps). Hence, the reduction is based on accounting for each dimension the

current negative sum of weights since the last reset, and the number of steps

that remain to achieve a non-negative sum.

This accounting is encoded in the states of Gc = (Sc1, S
c
2, E

c), as from the

original state space S, we go to S × ({−lmax ·W, . . . , 0} × {1, . . . , lmax})k: states

of Gc are tuples representing a state of G and the current status of open windows

in all dimensions (sum and remaining steps). We add states reached whenever

a window reaches its maximum size lmax without closing. We label those as bad

states. We have one bad state for every state of G. Transitions in Gc are built

in order to accurately model the effect of transitions of G on open windows.
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Clearly, a play is winning for the fixed window problem in G if and only if

the corresponding play in Gc is winning for the co-Büchi objective that asks that

the set of bad states is not visited infinitely often, as that means that from some

point on, all windows close in the required number of steps.

Proof. Let G = (S1, S2, E, k, w) be a multi-dimension game with the fixed win-

dow objective FixWMPG({0}k, lmax ∈ N0) and initial state sinit ∈ S. Recall

that W denotes the maximal absolute value of any edge in E. We construct the

unweighted game Gc = (Sc1, S
c
2, E

c) in the following way.

◦ Sc1 =
(
S1 × ({−W · lmax, . . . , 0} × {1, . . . , lmax})k

)
∪ {ς1, . . . , ς|S|}. Addi-

tional states ς1, . . . , ς|S| denote special bad states, one for each of the original

states s1, . . . , s|S| ∈ S. The other states are built as tuples that represent

(a) a visited state in G, (b) for each dimension, a couple modeling (b.1)

the current sum of weights since the last time the sum in this dimension

was non-negative, and (b.2) the number of steps that remain to reach a

non-negative sum in this dimension (i.e., before reaching the maximum

window size).

◦ Sc2 = S2 × ({−W · lmax, . . . , 0} × {1, . . . , lmax})k.

◦ Edges ((sa, (σ
1
a, τ

1
a ), . . . , (σka , τ

k
a )), (sb, (σ

1
b , τ

1
b ), . . . , (σkb , τ

k
b )) of Ec are built

as follows. For all (sa, sb) ∈ E, let we = w((sa, sb)), we have

– ((sa, (σ
1
a, τ

1
a ), . . . , (σka , τ

k
a )), ςb) ∈ Ec, with ςb the bad state associated

to state sb, iff ∃ t, 1 ≤ t ≤ k such that τ t1 = 1 and σt1 + we(t) < 0,

– ((sa, (σ
1
a, τ

1
a ), . . . , (σka , τ

k
a )), (sb, (σ

1
b , τ

1
b ), . . . , (σkb , τ

k
b )) ∈ Ec iff ∀ t, 1 ≤

t ≤ k, we have

∗ σta + we(t) ≥ 0→ σtb = 0, τ tb = lmax,

∗ σta + we(t) < 0 ∧ τ ta > 1→ σtb = σta + we(t), τ
t
b = τ ta − 1,

and we add edges (ςi, (si, (0, lmax, . . . , (0, lmax)) to Ec for all states si ∈ S.

Intuitively, the game Gc is built by unfolding the game G and integrating the

current sum of weights in the states of Gc, as well as the number of steps that

remain to close a window, both for each dimension separately. The game Gc

starts in the initial state (sinit, (0, lmax), . . . , (0, lmax)), and each time a transi-

tion (s, s′) in the original game G is taken, the game Gc is updated to a state
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(s′, (σ1, τ1), . . . , (σk, τk)) such that (a) if the current sum becomes positive in a

dimension t, the corresponding sum counter is reset to zero and the step counter

is reset to its maximum value, lmax, (b) if the sum is still strictly negative in a

dimension t and the window for this dimension is not at its maximal size, the

sum is updated and the step counter is decreased, and (c) if the sum stays strictly

negative and the maximal size is reached in any dimension, the game visits the

corresponding bad state and then, all counters are reset for all dimensions.

We argue that a play π in G is winning for the fixed window mean-payoff

objective if and only if the corresponding play πc inGc is winning for the co-Büchi

objective asking not to visit the set Sς = {ς1, . . . , ς|S|} infinitely often.

Indeed, consider a play π that is winning for objective FixWMPG({0}k, lmax).

By eq. (8.4), this play only sees a finite number of bad windows (windows that

are not closed in lmax steps in some dimension). By construction of Gc, the

corresponding play πc only visits the set Sς a finite number of times, hence it

is winning for the co-Büchi objective. Now, let πc be a winning play for the

co-Büchi objective. By definition, there exists a position i in πc such that all

states appearing after position i belong to S \ Sς . It remains to prove that for

any position j ≥ i, for any dimension t, 1 ≤ t ≤ k, there is a valid window of

size at most lmax. Again we use the inductive property of windows. We know

by construction that a reset of the sum happens in at most lmax steps, otherwise

we go to a bad state. Assume j is a position with a sum counter of zero in

some dimension t, and j′ is the next such position. Since resets are done as soon

as the sum becomes non-negative, all suffixes of the sequence from j to j′ are

non-negative. Hence, it is clear that for all position j′′, j < j′′ < j′, the window

from j′′ to j′ in dimension t is closed. Consequently, the corresponding play π

in G is winning for the fixed window mean-payoff objective of threshold 0 and

window size lmax.

As a direct corollary of this reduction, we obtain an EXPTIME algorithm

to solve the fixed window mean-payoff problem on multi-dimension games, as

solving co-Büchi games takes quadratic time in the size of the game [CH12].

Corollary 10.3. Given a two-player multi-dimension game G = (S1, S2, E, k, w)

and a window size lmax ∈ N0, the fixed window mean-payoff problem can be solved

in time O(|S|2 · (lmax)4·k ·W 2·k) via a reduction to co-Büchi games.
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Proof. Lemma 10.2 uses a co-Büchi game which state space is of size∣∣∣S × ({−W · lmax, . . . , 0} × {1, . . . , lmax}
)k∣∣∣+ |S| = O

(
|S| · (lmax)2·k ·W k

)
.

The quadratic algorithm for co-Büchi games described in [CH12] implies the

result.

A natural question is whether a distinct algorithm is useful in the one-

dimension case. Remark 10.4 notes that it is.

Remark 10.4. The algorithm described in Corollary 10.3 yields a procedure which

is polynomial in the size of the state space, the window size, and the largest

weight for the subclass of one-dimension games, hence only pseudo-polynomial

(i.e., exponential in V , the length of the encoding of weights), whereas Lemma 9.3

gives an algorithm that is also polynomial in the encoding of weights. C

10.1.2 Memory and Complexity Bounds

We first consider the fixed arbitrary window problem for which we show (i) in

Lemma 10.5, EXPTIME-hardness for {−1, 0, 1} weights and arbitrary dimen-

sions via a reduction from the membership problem for alternating polynomial-

space Turing machines (APTMs) [CKS81], and (ii) in Lemma 10.6, EXPTIME-

hardness for two dimensions and arbitrary weights via countdown games [JSL08].

Arbitrary windows - membership problem in APTMs. Let A be an

APTM and ζ ∈ {0, 1}∗ a word, such that the tape contains at most p(|ζ|) cells,

where p is a polynomial function. The membership problem asks to decide if A
accepts ζ.

We build a fixed arbitrary window mean-payoff game G so that P1 has to

simulate the run of A on ζ, and P1 has a winning strategy in G if and only if

the word is accepted by the machine. For each tape cell h ∈ {1, 2, . . . , p(|ζ|)},
we have two dimensions, (h, 0) and (h, 1) such that a sum of weights of value −1

(i.e., an open window) in dimension (h, i), i ∈ {0, 1} encodes that in the current

configuration of A, tape cell h contains a bit of value i.

In each step of the simulation (Fig. 10.1), P1 has to disclose the symbol under

the tape head: if in position h, P1 discloses a 0 (resp. a 1), he obtains a reward 1

in dimension (h, 0) (resp. (h, 1)).
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(q, h)

(q, h, 0)check

(q, h, 1)check

(q, h)branch qrestart

(q, h, 0)

(q, h, 1)

Transitions of (q, 0)

Transitions of (q, 1)

Figure 10.1: Gadget ensuring a correct simulation of the APTM on tape cell h.

To ensure that P1 was faithful, P2 is then given the choice to either let the

simulation continue, or assign a reward 1 in all dimensions except (h, 0) and

(h, 1) and then restart the game after looping in a zero self-loop for an arbitrary

long time. If P1 cheats by not disclosing the correct symbol under tape cell h, P2

can punish him by branching to the restart state and ensuring a sufficiently long

open window in the corresponding dimension before restarting (as in Fig. 8.3).

But if P1 discloses the correct symbol and P2 still branches, all windows close.

In the accepting state, all windows are closed and the game is restarted. The

window size lmax of the game is function of the existing bound on the length of

an accepting run. To force P1 to go to the accepting state, we add an additional

dimension, with weight −1 on the initial edge of the game and weight 1 on

reaching the accepting state.

Lemma 10.5. The fixed arbitrary window mean-payoff problem is EXPTIME-

hard in multi-dimension games with {−1, 0, 1} weights and arbitrary dimensions.

Proof. An alternating Turing machine (ATM) [CKS81] is written as a tuple

A = (Q, q0,Σin, δ, qacc) where:

◦ Q is the finite set of control states with a partition (Q∨, Q∧) of Q into

existential and universal states;

◦ q0 ∈ Q is the initial state;

◦ Σin = {0, 1} is the input alphabet and Σtape = Σin∪{#} the tape alphabet,

with # the blank symbol;
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◦ δ ⊆ Q× Σtape ×Q× Σtape × {−1, 1} is a transition relation;

◦ there is a special accepting state qacc ∈ Q∨ (without loss of generality).

We say that A is a polynomial-space alternating Turing machine (APTM) if for

some polynomial function p, the space used by A on any input word ζ ∈ Σ∗in is

bounded by p(|ζ|).
We define the AND-OR graph of the APTM (A, p) on the input word ζ ∈ Σ∗in

as G(A, p) = 〈S∨, S∧, s0,∆, R〉 where

◦ S∨ = {(q, h, t) | q ∈ Q∨, 1 ≤ h ≤ p(|ζ|) and t ∈ Σ
p(|ζ|)
tape };

◦ S∧ = {(q, h, t) | q ∈ Q∧, 1 ≤ h ≤ p(|ζ|) and t ∈ Σ
p(|ζ|)
tape };

◦ s0 = (q0, 1, t) where t = ζ ·#p(|ζ|)−|ζ|;

◦ ((q1, h1, t1), (q2, h2, t2)) ∈ ∆ iff there exists (q1, t1(h1), q, γ, d) ∈ δ such that

q2 = q, h2 = h1 + d, t2(h1) = γ and t2(h) = t1(h) for all h 6= h1;

◦ R = {(q, h, t) ∈ S∨ | q = qacc}.

Intuitively, states of the graph correspond to configurations (q, h, t) where q is a

control state of the machine, h the position of the tape head, and t the current

word written on the tape. Given a state q of the machine A, tape head on cell h

and a word t on the tape, a transition from (q, h, t) to (q′, h′, t′) exists in the

graph G(A, p) if the transition relation δ of the machine A admits a transition

that given this configuration, updates the content of cell h to the symbol t′(h),

such that the tape now contains the word t′, and then goes to control state q′

and moves the tape head to an adjacent cell h′.

A word ζ ∈ Σ∗in is accepted by an APTM (A, p) if there exists a run tree

(obtained by choosing a child in existential nodes and keeping all children in

universal nodes) of A on ζ such that all leafs are accepting configurations. That

is, a word is accepted if and only if, in the two-player game defined by G(A, p),
player P∨ has a strategy to reach the set of accepting states R. Deciding the

acceptance of a word by an APTM is an EXPTIME-complete problem, known

as the membership problem [CKS81].

We construct a fixed window mean-payoff game G = (S1, S2, E, k, w) simu-

lating the machine (A, p) as follows. Let k = 2·p(|ζ|)+1: there is a dimension for
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each pair (h, 0) and (h, 1), for all 1 ≤ h ≤ p(|ζ|), and one additional dimension.

The set of states S of the game is

S ={qrestart} ∪ {qin} ∪ {q̂acc}
∪ {(q, h) | q ∈ Q, 1 ≤ h ≤ p(|ζ|)}
∪ {(q, h, i)check | q ∈ Q, 1 ≤ h ≤ p(|ζ|), i ∈ {0, 1}}
∪ {(q, h)branch | q ∈ Q, 1 ≤ h ≤ p(|ζ|)}
∪ {(q, h, i) | q ∈ Q, 1 ≤ h ≤ p(|ζ|), i ∈ {0, 1}}.

States of the form (q, h) belong to P1. States of the form (q, h, i) belong to P1

if q ∈ Q∨ in the machine A. All other states belong to P2. The initial state

is qrestart. It has two outgoing edges with weights zero in all dimensions: one self-

loop, and one edge to qin. The latter is assigned the following weights: −1 for

dimension (h, i) if the letter at position h of ζ is i, −1 in the very last dimension

(2 · p(|ζ|) + 1), and zero everywhere else. From qin, the game goes to (q0, 1) and

the simulation of A begins.

The game mimics runs of A, and it is ensured that if the current state of the

game is (q, h) and the cell content is i, then the sum of weights since the last visit

of qin in dimension (h, i) is −1. We refer to the segment of play since the last visit

of qin as the current round. We depict a step of the simulation in Fig. 10.1. At

state (q, h), P1 has the choice between states (q, h, 0)check and (q, h, 1)check, resp.

corresponding to declaring a content 0 or 1 of the tape cell h. The reward for

dimension (h, i), i ∈ {0, 1} is 1 on state (q, h, i)check. At state (q, h, i)check, a state

of P2, P2 checks whether P1 has correctly revealed the tape content as follows:

(i) Player P2 can choose to go to state (q, h)branch, in which all dimensions other

than (h, 0) and (h, 1), including the very last, are increased by 1, and then go

to qrestart on which P2 will be able to delay the play; (ii) Player P2 can choose

to proceed and continue the simulation: the game then goes to state (q, h, i).

State (q, h, i) is either a state of P1 or P2, depending on the affiliation of state q

in the APTM. Such a gadget ensures that if P1 cheats by not disclosing the

correct symbol, P2 can force an open window of arbitrary length in the current

round by looping on qrestart for some time, and then restarting the game. On the

other hand, if P1 is faithful and P2 still decides to branch to (q, h)branch, then all

windows will be closed for the current round.
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If P1 does not cheat and P2 acknowledges it by not branching, the game

advances to a state of the form (q, h, i). At such a state, we add transitions as

follows: if there exists a transition from (q, h, i) to (q′, h′, i′) in A, then we add an

edge from (q, h, i) to (q′, h′) in the game G, and assign weight −1 in dimension

(h, i′), as the tape cell at position h contains i′ and we ensure that the sum in

dimension (h, i′) in the current round is −1. At the accepting states (qacc, h),

all dimensions are assigned reward 1, and the next state is q̂acc. State q̂acc is

followed by qrestart. Again there is no risk in looping as all dimensions are now

non-negative.

Formally, blank symbols need to be added. For brevity and simplicity of the

presentation, we omit these technical details.

We fix the window size lmax equal to three times the size of the configuration

graph (bound on the length of a run) plus three, and we argue that the game G

is a faithful simulation of the machine A, that is, P1 wins the fixed window

mean-payoff game if and only if the word ζ is accepted by A. Notice that the

construction ensures that if P1 cheats in the current round, P2 can make this

round losing, as discussed before. Similarly, if P1 does not cheat but does not

reach the accepting state, dimension 2 · p(|ζ|) + 1 will remain negative when

arriving in qrestart and P2 will be able to cycle long enough to make the round

losing as the window in the last dimension will remain open for lmax steps.

Clearly, P1 cannot see losing rounds infinitely often otherwise the play is losing.

Assume the word ζ is accepted by the machine. Then there is an accepting

run tree, and the winning strategy of P1 is to follow this run tree and always

reveal the correct symbol. This way, either P2 restarts and the round is winning

because all dimensions are non-negative, or P2 does not restart and an accepting

state (qacc, h) is reached within the maximum allowed window size. Indeed, in

the APTM, there is a strategy to reach the accepting state in a number of steps

bounded by the size of the configuration graph. In that case, the round is also

winning.

Conversely, assume that the word ζ is not accepted by the APTM. Consider

any strategy λ1 of P1. Clearly, P1 cannot cheat as otherwise, he loses. So assume

he does not cheat. Then there is a path in the run tree obtained from playing

the strategy λ1 in A such that the path never reaches an accepting state. Hence,

the strategy λ2 of P2 that follows this path in the game G ensures that the sum
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in dimension 2 · p(|ζ|) + 1 is always strictly negative, and after waiting till the

bound lmax on the window size is met, P2 has made the round losing and he can

restart the game safely. Acting this way infinitely often, P2 can violate the fixed

window objective for P1. It follows that P1 wins in G if and only if the word ζ

is accepted by the APTM A.

Arbitrary windows - countdown games. We now prove that the prob-

lem is also EXPTIME-hard for two dimensions and arbitrary weights via a re-

duction from countdown games. A countdown game C consists of a weighted

graph (S, T ), with S the set of states and T ⊆ S × N0 × S the transition re-

lation. Configurations are of the form (s, c), s ∈ S, c ∈ N. The game starts

in an initial configuration (sinit, c0) and transitions from a configuration (s, c)

are performed as follows: first P1 chooses a duration d, 0 < d ≤ c such that

there exists t = (s, d, s′) ∈ T for some s′ ∈ S, second P2 chooses a state s′ ∈ S
such that t = (s, d, s′) ∈ T . Then, the game advances to (s′, c − d). Terminal

configurations are reached whenever no legitimate move is available. If such a

configuration is of the form (s, 0), P1 wins the play. Otherwise, P2 wins the play.

Deciding the winner in countdown games given an initial configuration (sinit, c0)

is EXPTIME-complete [JSL08].

Given a countdown game C and an initial configuration (sinit, c0), we create

a game G = (S1, S2, E, k, w) with k = 2 and a fixed window objective for lmax =

2 · c0 + 2 (Fig. 10.2). The two dimensions are used to store the value of the

countdown counter and its opposite. Each time a duration d is chosen, an edge

of value (−d, d) is taken. The game simulates the moves available in C: a strict

alternation between states of P1 (representing states of S) and states of P2

(representing transitions available from a state of S once a duration has been

chosen). On states of P1, we add the possibility to branch to a state srestart of P2,

in which P2 can either take a zero cycle, or go back to the initial state and force

a restart of the game. By placing weights (0,−c0) on the initial edge, and (c0, 0)

on the edge branching to srestart, we ensure that the only way to win for P1 is to

accumulate a value exactly equal to c0 in the game before switching to srestart.

This is possible if and only if P1 can reach a configuration of value zero in C.

Lemma 10.6. The fixed arbitrary window mean-payoff problem is EXPTIME-

hard in games with two dimensions and arbitrary weights.
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sinit (sinit, d) s′

restart

(c0, 0)

(−d, d) (0, 0)

(0, 0)

(0,−c0)

(c0, 0)

(−d′, d′)

(−d′′, d′′)

(0, 0)

(0, 0)

Figure 10.2: Reduction from countdown games to fixed window games.

Proof. We establish a polynomial-time reduction from the countdown game prob-

lem to the fixed arbitrary window problem. Let C = (S, T ) be a countdown

game [JSL08], with initial configuration (sinit, c0). We create a corresponding

game G = (S1, S2, E, k, w) as follows.

◦ S1 = S.

◦ Let ST ⊆ S × N0 be the subset of pairs (s, d) such that there exists a

transition (s, d, s′) ∈ T . Then, S2 = ST ∪ {srestart}. State srestart is the

initial state of game G.

◦ For each transition (s, d, s′) ∈ T , we add edges (s, (s, d)), with s ∈ S1 and

(s, d) ∈ S2, and ((s, d), s′), with s′ ∈ S1, to the set of edges E. Edge

(s, (s, d)) has weight (−d, d) and edge ((s, d), s′) has weight (0, 0).

◦ For all s ∈ S1, we add an edge (s, srestart) of weight (c0, 0).

◦ From srestart, we add an edge (srestart, sinit) of value (0,−c0).

◦ On srestart, we add a self-loop (srestart, srestart) of weight (0, 0).

We fix the window size lmax = 2 · c0 + 2, and we claim that P1 wins the fixed

window problem if and only if he wins the countdown game. Recall that to win a

countdown game, P1 must be able to reach a configuration (s, 0) in the game C.
The key idea to our construction is that in the game G, the only way to avoid
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seeing infinitely often open windows of size larger than lmax is to accumulate

exactly c0 before restarting, which is equivalent to reaching a configuration of

value 0 in C.
Notice that the game G starts by visiting an edge of value (0,−c0) and

afterwards, all edges from states of P1 have a value (−d, d) corresponding to

the duration he chooses in the countdown game. All except the edge he can

decide to take to go to srestart, which value is (c0, 0). Clearly, if P1 decides to go

in srestart, he has to close all windows, as otherwise P2 can use the self-loop to

delay the play long enough and provoke a sufficiently long bad window, which

if done repeatedly, induces a losing play. On the other hand, if P1 decides to

never go toward srestart, he will keep accumulating negative values in the first

dimension and he is guaranteed to lose. So obviously the behavior of P1 should

be to play as in the countdown game to accumulate exactly c0 in dimension 2

(and −c0 in dimension 1) before switching to srestart, so that P2 can do no harm

by delaying the play as all windows will be closed.

The accumulated value has to be exactly c0 as (a) if it is less than c0, di-

mension 2 will remain negative, and (b) if it is more than c0, dimension 1 will

stay negative (i.e., the edge (s, srestart) will not suffice to get it back above zero).

Since the minimal increase is of 1 every two edges by construction, the allowed

window size lmax is sufficient to enforce such a behavior, if possible. This shows

that P1 wins the fixed window problem from initial state srestart in G if and only

if he also wins the countdown game C from (sinit, c0), as accumulating c0 in G is

equivalent to reaching a configuration of value zero in C.

Polynomial windows - generalized reachability games. For the case of

polynomial windows, Lemma 10.7 proves PSPACE-hardness via a reduction from

generalized reachability games [FH10]. Filling the gap with the EXPTIME-

membership given by Corollary 10.3 is an open problem.

The generalized reachability objective is a conjunction of reachability objec-

tives: a winning play has to visit a state of each of a series of k reachability sets.

If P1 has a winning strategy in a generalized reachability game Gr = (Sr1 , S
r
2 , E

r),

then he has one that guarantees visit of all sets within k · |Sr| steps.

We create a modified weighted version of the game, G = (S1, S2, E, k, w),

such that the weights are k-dimension vectors. The game starts by opening

a window in all dimensions and the only way for P1 to close the window in
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dimension t, 1 ≤ t ≤ k is to reach a state of the t-th reachability set. We modify

the game by giving P2 the ability to close all open windows and restart the game

such that the prefix-independence of the fixed window objective cannot help P1

to win without reaching the target sets. Then, a play is winning in G for the

fixed window objective of size lmax = 2 ·k · |Sr| if and only if it is winning for the

generalized reachability objective in Gr.

Lemma 10.7. The fixed polynomial window mean-payoff problem is PSPACE-

hard.

Proof. We show the PSPACE-hardness by a reduction from the generalized

reachability problem [FH10]. Given a game graph Gr = (Sr1 , S
r
2 , E

r), a series

of reachability sets Rt ⊆ Sr, for 1 ≤ t ≤ k, with k ≤ |Sr|, and an initial state

srinit ∈ Sr, the generalized reachability problem asks if there exists a strategy

of P1 such that any consistent outcome starting in srinit visits a state of each

set Rt at least once. It is known that if such a strategy exists, then there exists

one which ensures reaching all sets in at most k · |Sr| steps.

We build a k-dimension fixed window mean-payoff game G = (S1, S2, E, k, w)

as follows. We define Sbranch ⊂ S2, the set of P2 states such that for all s, s′ ∈ Sr

such that (s, s′) ∈ Er, we have that bs,s′ ∈ Sbranch. Let S1 = Sr1 and S2 =

Sr2 ∪ Sbranch ∪ {srestart}. Let E be the set of edges such that for all (s, s′) ∈ Er,
we have that (s, bs,s′) ∈ E, (bs,s′ , s

′) ∈ E, (bs,s′ , srestart) ∈ E, and such that

(srestart, s
r
init) ∈ E. That is, we introduce in all edges of Er a state of P2 that

let him branch to an added state srestart or continue as in Gr. The new initial

state in G is srestart, and there is an edge from srestart to the old initial state srinit.

The weights are as follows: all edges from states bs,s′ to srestart have value 1 in

all dimensions. The edge from srestart to srinit has value −1 in all dimensions.

All other edges of the game have value zero, except edges entering a state that

belongs to a reachability set Rt, which have value 1 in dimension t and 0 in

the other dimensions. If a state belongs to several sets, then all corresponding

dimensions get a 1.

We claim that P1 has a winning strategy for FixWMPG({0}k, lmax = 2·k ·|Sr|)
if and only if he has a winning strategy for the generalized reachability objective

in Gr. Consider the game G. Clearly, the only edge involving negative values is

(srestart, s
r
init), which value is (−1, . . . ,−1). Therefore, a losing play for eq. (8.4)

should see this edge infinitely often, as it is the starting position of all open
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windows. On the other hand, going from a state bs,s′ to srestart involves an edge

of value (1, . . . , 1), hence if the open window starting in srestart comes back in

srestart before hitting its maximal size, the window will close. So the strategy

of P2 should be to wait for lmax = 2·k·|Sr| steps before forcing a restart. Consider

a winning strategy λ1 of P1 in G. Because of the strategy of P2, λ1 has to ensure

obtaining +1 in all dimensions by only using transitions entering in states of Sr.

By construction, this implies that λ1 enforces a visit of all reachability sets,

and thus wins for the generalized reachability problem. Consider the converse

implication. Let λr1 be a winning strategy in Gr. There exists such a strategy

that ensures seeing all reachability sets (thus closing all windows) in at most

lmax = 2 · k · |Sr| steps if P2 does not branch to srestart. On the other hand, if P2

does branch before lmax steps, all windows also close, as branching edges have

value (1, . . . , 1). Hence, this strategy is also winning for FixWMPG({0}k, lmax).

This shows the correctness of the reduction and concludes our proof.

Memory bounds. We conclude our study of the multi-dimension fixed window

problem by considering memory bounds. A direct corollary of Lemma 10.2 is the

existence of winning strategies of at most exponential size for both players, as

memoryless strategies are sufficient in co-Büchi games [EJ91]. A corollary of the

reduction from generalized reachability games to the fixed polynomial window

problem used to prove Lemma 10.7 and the results of [FH10, Lemma 2] (showing

exponential lower bounds on memory for generalized reachability objectives) is

that such memory is needed in general, again for both players.

Another example of a family of games in which P1 requires exponential mem-

ory (in the number of dimensions) is given by the family defined in Lemma 5.9

(Fig. 5.4), introduced in the context of multi energy games. All examples have

in common that the players must be able to differentiate between an exponential

number of histories and act accordingly to achieve their objective: in the game

of Fig. 5.4, P1 wins objective FixWMPG({0}k, lmax = |S|/2) only if he is able to

make in ti the opposite choice of P2 in si, which requires a strategy encoded as

a Moore machine with at least 2k/2 states. Lemma 10.8 sums up these results.

Lemma 10.8. In multi-dimension games with a fixed window mean-payoff ob-

jective, exponential memory is both sufficient and necessary for both players in

general, even for polynomial window sizes.
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10.1.3 Wrap-up

We summarize the complexity of the fixed window problem in Theorem 10.9.

Theorem 10.9. In two-player multi-dimension games, the fixed arbitrary win-

dow mean-payoff problem is EXPTIME-complete, and the fixed polynomial win-

dow mean-payoff problem is PSPACE-hard. For both players, exponential mem-

ory is sufficient and is required in general.

10.2 Bounded Window

Unlike the one-dimension case, in which it is easier to decide the bounded prob-

lem than the fixed arbitrary one (i.e., the problem becomes easier when the fixed

window size is sufficiently large), we prove that the complexity of the bounded

window problem in multi-dimension games is at least non-primitive recursive.1

Hence, there is no hope for efficient algorithms on the complete class of two-player

multi-dimension games.

This result is obtained through a reduction from the problem of deciding

the existence of an infinite execution in a marked reset net, also known as the

termination problem. A marked reset net [DFS98] is a Petri net [Esp96] with

reset arcs together with an initial marking of its places. Reset arcs are special

arcs that reset a place (i.e., empty it of all its tokens). The termination problem

for reset nets is decidable but non-primitive-recursive-hard (as follows from the

results of [Sch02], also discussed in [LNO+08]).

Given a reset net N with an initial marking m0 ∈ N|P | (where P is the set of

places of the net), we build a two-player multi-dimension game G with k = |P |+3

dimensions such that P1 wins the bounded window objective for threshold {0}k

if and only if N does not have an infinite execution from m0.

A high level description of our reduction is as follows. The structure of the

game (Fig. 10.3) is based on the alternance between two gadgets simulating the

net (Fig. 10.4). Edges are labeled by k-dimension weight vectors such that the

first |P | dimensions are used to encode the number of tokens in each place.

1That is, there exists no primitive recursive function that computes the answer to the
bounded window problem. A well-known example of a decidable but non-primitive recursive
function is the Ackermann function [Ack28].
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Figure 10.3: Careful alternation between gadgets is needed for P1 to win.

In each gadget, P2 chooses transitions to simulate an execution of the net.

During a faithful simulation, there is always a running open window in all the

first |P | dimensions: if place p contains n tokens then the negative sum from the

start of the simulation is −(n+ 1). This is achieved as follows: if a transition t

consumes I(t)(p) tokens from p, then this value is added on the corresponding

dimension, and if t produces O(t)(p) tokens in p, then O(t)(p) is removed from

the corresponding dimension. When a place p is reset, a gadget ensures that

dimension p reaches value −1 (the coding of zero tokens). This is thanks to the

monotonicity property of reset nets: if P1 does not simulate a full reset, then

the situation gets easier for P2 as it leaves him more tokens available.

If all executions terminate, P2 has to choose an unfireable transition at some

point, consuming unavailable tokens from some place p ∈ P . If so, the window

in dimension p closes. After each transition choice of P2, P1 can either continue

the simulation or branch out of the gadget to close all windows, except in some

dimension p of his choice. Then P2 can arbitrarily extend any still open window

in the first (|P | + 1) dimensions and restart the game afterwards. Dimension

(|P |+ 1) prevents P1 from staying forever in a gadget.

If an infinite execution exists, P2 simulates it and never has to choose an

unfireable transition. Hence, when P1 branches out, the window in some di-
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Figure 10.4: Gadget simulating an execution of the reset net.

mension p stays open. The last two dimensions force him to alternate between

gadgets so that he cannot take profit of the prefix-independence to win after a

faithful simulation. So, P2 can delay the closing of the open window for longer

and longer, thus winning the game.

Theorem 10.10. In two-player multi-dimension games, the bounded window

mean-payoff problem is non-primitive-recursive-hard.

Proof. We prove a reduction from the termination problem on reset nets to the

bounded window problem on two-player multi-dimension games. The former is

known to be non-primitive-recursive-hard [Sch02,LNO+08].

Let N = 〈P, T, I,O, r〉 be a reset net such that

◦ P = {p1, p2, . . . , p|P |} is the set of places;

◦ T = {t1, t2, . . . , t|T |} is the set of transitions;

◦ I : T → N|P | is the input function, such that for each transition t ∈ T , I(t) is

a |P |-dimension vector such that for all dimension p ∈ {1, . . . , |P |}, I(t)(p)

specifies the number of tokens from place p consumed by the transition t;2

2For simplicity, we use p to refer to a place p ∈ P and to the number i ∈ {1, . . . , |P |} such
that pi = p, that is p indistinctly refers to the place and the corresponding dimension in the
weight vectors.
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◦ O : T → N|P | is the output function, such that for each t ∈ T , O(t) is a

|P |-dimension vector such that for all dimension p ∈ {1, . . . , |P |}, O(t)(p)

specifies the number of tokens produced in place p by the transition t;

◦ r : T → P is the reset function, such that for all transition t ∈ T , r(t)

specifies the unique place (w.l.o.g.) which is reset by transition t.

Given an initial marking of the places (i.e., an initial number of tokens in each

place) m0 ∈ N|P |, the termination problem asks if there exists an infinite exe-

cution of the net, that is, if there exists an infinite sequence of transitions that

can be fired from m0. A transition t is fireable from marking m ∈ N|P | if for all

place p ∈ P , I(t)(p) ≤ m(p). An execution terminates if no transition can be

fired because the necessary tokens are unavailable. We first note an important

monotonicity property of reset nets: for all reset net N = 〈P, T, I,O, r〉, for all

markings m,n ∈ N|P |, if m ≤ n and ρ ∈ Tω is an infinite sequence of transitions

fireable from m, then ρ is also fireable from n. This property is used later on.

We claim that given a reset net N and an initial marking m0, we can build

in polynomial time a game G in which P1 has a winning strategy for objective

BndWMPG(0) if and only if there exists no infinite execution of the net from m0.

We build the game G = (S1, S2, E, k, w) with k = |P | + 3 as represented

in Fig. 10.3 and Fig. 10.4. Unlabeled edges have value zero in all dimensions.

For clarity, we define the following |P |-dimension integer vectors: 1 = (1, . . . , 1)

is the unit vector, 0 = (0, . . . , 0) is the zero vector, and, for a, b ∈ Z, p ∈ P ,

the vector ap→b represents the vector (a, . . . , a, b, a, . . . , a) which has value b in

dimension p and a in the other dimensions. The first |P | dimensions encode the

tokens present in each place, whereas the last three are used to compel P1 to

act fairly. Our construction ensures that at all times along a valid execution of

the net in a gadget, if a place p ∈ P possess n tokens, then the running sum of

weights over the largest open window has value (−n− 1) in dimension p.

The states and edges of the game are built as follows.

◦ Inside a gadget, we have a state fire belonging to P2, with |T | outgoing

edges corresponding to the |T | transitions of the net. Each transition t is

encoded as follows:

– an edge from fire to state testt belonging to P1, of value (I(t),−1, 0, 0),
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such that the running sum is updated to accurately encode the con-

sumption of tokens;

– in state testt, (|P | + 1) outgoing edges, giving P1 the possibility to

either branch out of the gadget, going to the state closep corresponding

to the dimension p of his choice, or continuing via an edge of value

(0,−1, 0, 0) to the resetq state, a state of P1 such that q = r(t) is the

unique place reset by transition t;

– a self-loop of value (0q→1,−1, 0, 0) on the resetq state;

– an edge from resetq to outt of value (0q→−1,−1, 0, 0) which purpose is

to ensure that in dimension q, there is a new open window of sum −1

after a full reset (i.e., it encodes that the number of tokens in place q

is zero);

– an edge from outt back to fire of value (−O(t),−1, 0, 0), producing

tokens according to the output of transition t.

◦ Branching from the left gadget leads to a state closeleft
p of P1 with a self-loop

of weight (1p→0, 1, 1,−1) and an outgoing edge to state delayleft of P2.

◦ State delayleft possess a self-loop of value (0, 0, 1, 1) and an edge going to

the right gadget with value (−m0 − 1, 0, 0, 0).

◦ The right gadget is constructed symmetrically, the only change being that

the self-loop on states closeright
p of P1 now has value (1p→0, 1,−1, 1).

The game starts in the left gadget with an initial edge of value (−m0−1, 0, 0, 0)

corresponding to the initial marking of the net.

We claim that (i) if there exists no infinite execution ρ ∈ Tω of the net N ,

then P1 has a winning strategy in G for the bounded window objective, and

(ii) if there exists such an execution, then P2 has a winning strategy in G. By

determinacy, proving both claims will conclude our proof.

Case (i). Assume that there exists no infinite execution ρ ∈ Tω of the net.

Then there exists a bound b ∈ N on the length of any valid execution. Hence, P2

can only simulate the net faithfully for b steps, so after at most (b+ 1) steps, he

needs to use an unfireable transition. That is, the next chosen transition requires

more tokens than available in some place p ∈ P . We define a winning strategy

λ1 ∈ Λ1 of P1 in G as follows:
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1. In a state testt, if the last transition t was valid (i.e., all first |P | dimensions

have a negative running sum), go to the corresponding resetq state. Other-

wise, there exists a dimension p in which the sum has become non-negative

and all windows are closed: exit the gadget and go to the corresponding

state closep.

2. In a state resetq, cycle until the sum in dimension q takes value 0, then go

to state outt.

3. In a state closep, take the loop exactly f(b) times before going to state delay,

where f : N→ N is a well-chosen function that we define below (hence f(b)

is constant along the play).

We claim that it is possible to define f(b) sufficiently large to ensure that this

strategy is winning.

Let M ∈ N be the largest number of tokens produced as output of any

transition of the net, on any place. We consider the value of the negative sum

in any of the first (|P | + 1) dimensions at the moment when P1 decides to

exit the gadget according to the strategy λ1. Notice that for any dimension

p ∈ {1, . . . , |P |}, this sum is bounded by x = (−m0(p)− 1− b ·M). Hence, the

number of loops taken on any visit of state resetq is bounded by x. The sum in

dimension (|P |+ 1) is thus bounded by (b · (4 + x) + 1), which we define as f(b).

The last two dimensions are not modified inside a gadget.

Now clearly, looping in state closep for f(b) steps is sufficient to close all

windows in all dimensions corresponding to places (recall that dimension p is

closed by P2 cheating on place p), as well as in dimension (|P | + 1). However,

this loop opens a window in one of the last two dimensions (the last for the left

gadget, and the second to last for the right gadget). As the delay state of P2

has a positive effect in those dimensions, if P2 decides to delay the play for f(b)

steps, all windows will be closed. If he does not delay, the play will proceed to

the next gadget, in which P2 is also forced to cheat before (b + 1) transitions.

Hence after looping for f(b) steps in the corresponding closep state, the open

window will close (and another will open in the other dimension which will in

turn be closed after the next gadget). By keeping this behavior, P1 can thus

enforce that any open window along the play will close in at most (4 · f(b) + 4)

steps. Thus the outcome is winning for the bounded window objective.
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Case (ii). Assume that there exists an infinite execution ρ ∈ Tω of the net.

We define a winning strategy λ2 ∈ Λ2 of P2 as follows. The strategy is played in

rounds, with the initial round being round 1.

1. Every time a gadget is entered, start playing in state fire according to the

infinite execution ρ, that is, choose transitions in order to obtain the same

trace.

2. When a state delay is visited during round n, take the self-loop n times

then continue to state fire and start round n+ 1.

Notice that this strategy requires infinite memory. We claim that any con-

sistent outcome of the game is winning for P2, that is, it does not belong to

BndWMPG(0).

First, P1 cannot stay forever in a gadget, thanks to dimension (|P |+ 1): he

has to branch at some point otherwise the play is lost. Second, if in state resetq,

P1 decides to cycle for less than necessary for a full reset, the situation gets better

for P2 by the monotonicity property of the reset net (as P2 gets to continue with

more tokens than expected). Notice that P1 cannot accumulate positive values

in the sum, as the next edge will restart a new window and all accumulation will

be forgotten with regard to the objective. Third, if P1 branches and exits the

gadget to go to some state closep, then all dimensions corresponding to places,

including dimension p, have a running open window (dimension p has a strictly

negative value since P2 does not cheat). Hence, no matter how long P1 chooses

the self-loop, the window in dimension p will stay open (and P1 cannot stay here

forever because of the last two dimensions). Fourth, when the play reaches a

state delay with an open window in dimension p ∈ {1, . . . , |P |}, the strategy λ2

prescribes that P2 will loop for longer and longer periods of time, thus enforcing

open windows of constantly growing length. As a consequence, any consistent

outcome is such that the bounded window objective is not satisfied, which proves

our point and further concludes our proof.

Notice that Theorem 10.10 implies that P1 may need to use a non-primitive

recursive window size to win a multi-dimension bounded window mean-payoff

game, whereas a pseudo-polynomial bound exists in the one-player case (see

Corollary 9.10). The decidability of the bounded window mean-payoff problem

remains open.
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10.3 On Direct Objectives

Similarly to what we did in Sect. 9.3 for one-dimension games, we here argue

that identical complexity results are obtained for the direct variants (Table 10.1),

by slight modifications of the presented proofs.

k-dimension

complexity P1 mem. P2 mem.

direct fixed PSPACE-h.

exponential
polynomial window EXP-easy

direct fixed
EXP-c.

arbitrary window

direct bounded
NPR-h. - -

window problem

Table 10.1: Complexities and memory requirements for the direct objectives
in multi-dimension games. Results are identical to the prefix-independent case
(h. for hard, c. for complete, EXP for EXPTIME and NPR for non-primitive
recursive).

Direct fixed window problem. The following results extend to the direct

case.

◦ EXPTIME algorithm. Lemma 10.2 presents a reduction from fixed window

games to exponentially larger co-Büchi games. It is easy to obtain a similar

reduction from direct fixed window games by considering a safety objective

for P1 (i.e., reachability for the set of bad states for P2). This also implies

an exponential-time algorithm.

◦ EXPTIME-hardness of the arbitrary window problem for weights {−1, 0, 1}
and arbitrary dimensions. The reduction of the membership problem for

polynomial space alternating Turing machines immediately yields the result

for the direct objective. Indeed, the strategies proposed in the proof stay

winning for this objective. Note that actually the strategy of P2 may be

simpler, as he may cycle forever on srestart after branching to punish an

unfaithful symbol disclosure by keeping a window indefinitely open.
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◦ EXPTIME-hardness of the arbitrary window problem for two dimensions

and arbitrary weights. The reduction from countdown games established in

Lemma 10.6 extends straightforwardly to direct objectives, and P2 can use

a simpler winning strategy consisting in looping forever in its zero cycle.

◦ PSPACE-hardness of the polynomial window problem. The reduction of

generalized reachablity games also holds without modification for the direct

fixed polynomial window objective.

◦ Exponential memory bounds. Exponential upper bounds follow from the

modified Lemma 10.2, using safety games. Lower bounds witnessed by

Lemma 10.8 are also verified in the presented game as well as from the

reduction of generalized reachablity games.

Direct bounded window problem. Non-primitive-recursive-hardness (Theo-

rem 10.10) extends to the direct objective with a simpler construction. Indeed,

it is sufficient to consider the game using only the first (|P |+ 1) dimensions, and

consisting of only one gadget, with the branching out of the gadget now going

to an absorbing state with a self-loop of weight 1p→0 such that when P1 decides

to branch, all windows get closed eventually, except in the dimension p of his

choice, for which the window is only closed if P2 cheats and stays open forever

otherwise.





Part IV

Beyond Worst-Case Synthesis





CHAPTER 11
The Beyond Worst-Case Framework

Introduction � Beyond Worst-Case Synthesis Problem

We extend the traditional quantitative synthesis framework by going beyond the

worst-case.

On the one hand, classical analysis of two-player games involves an adversary

(modeling the environment of the system) which is purely antagonistic and asks

for strict worst-case guarantees. On the other hand, MDPs represent situations

where the system is faced to a purely stochastic environment: the aim is then to

optimize the expected payoff, with no guarantee on individual outcomes.

We introduce the beyond worst-case (BWC) synthesis problem, which is to

construct strategies that guarantee some quantitative requirement in the worst-

case while providing an higher expected value against a particular stochastic

model of the environment given as input.

This innovative setting was introduced in joint work with Bruyère, Filiot and

Raskin [BFRR13,BFRR14a,BFRR14b].

177
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11.1 Introduction

Classical models. As discussed in Part I of the thesis, two-player zero-sum

quantitative games (Sect. 2.1.2) and Markov decision processes (Sect. 2.1.4) are

two popular formalisms for modeling decision making in adversarial and uncer-

tain environments respectively.

In the former, two players compete with opposite goals, and we want strate-

gies for P1 (the system) that ensure a given minimal performance against all pos-

sible strategies of P2 (the environment). In the latter, the system plays against

a stochastic model of its environment, and we want strategies that ensure a good

expected overall performance.

Those two models are well studied and simple optimal pure memoryless

strategies exist for classical objectives such as mean-payoff or shortest path

(Sect. 2.3.2). But both models have clear weaknesses: strategies that are good

for the worst-case may exhibit suboptimal behaviors in probable situations while

strategies that are good for the expectation may be terrible in some unlikely but

possible situations.

Games
→ antagonistic adversary
→ guarantees on worst-case

MDPs
→ stochastic adversary
→ optimize expected value

BWC synthesis
→ ensure both

∧

Studied
value functions

Mean-Payoff Shortest Path

Figure 11.1: The beyond worst-case framework is a crossroad between games
and Markov decision processes.
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What if we want both? In practice, we would like strategies that both ensure

(a) some worst-case threshold no matter how the adversary behaves (i.e., against

any arbitrary strategy) and (b) a good expectation against the expected behavior

of the adversary (given as a stochastic model).

This is the subject of Part IV, illustrated in Fig. 11.1: we study how to

construct finite-memory strategies that ensure both (a) and (b). As motivated

in Part II, we are particularly interested in finite memory for P1 as it can be

implemented in practice (as opposed to infinite memory). Note that P2 is not

restricted in his choice of strategies, but we see that simple strategies suffice.

Our problem, the beyond worst-case (BWC) synthesis problem, makes sense for

any quantitative measure. We focus on two classical ones: the mean-payoff, and

the shortest path. Our results are summarized in Sect. 11.1.3.

Illustration. The BWC synthesis problem is relevant to produce system con-

trollers that provide nice expected performance in the everyday situation while

ensuring a strict (but relaxed) performance threshold even in the event of very

bad (while unlikely) circumstances. We motivate this setting through the fol-

lowing toy example.

Example 11.1. Consider the graph in Fig. 11.2 to illustrate the shortest path

context. Integer labels are durations in minutes, and fractions are probabilities

that model the expected behavior of P2. This graph can be considered either as

a two-player game, if we forget about those probabilities; or as an MDP, if we

see states of P2 as stochastic states with the associated transition probabilities.

Assume P1 wants a strategy to go from “home” to “work” such that “work”

is guaranteed to be reached within 60 minutes (to avoid missing an important

meeting), and P1 would also like to minimize the expected time to reach “work”.

The strategy that minimizes the expectation is to take the car (expectation

is 33 minutes) but it is excluded as there is a possibility to arrive after 60 minutes

(in case of heavy traffic). Bicycle is safe but the expectation of this solution is 45

minutes.

We can do better with the following strategy: try to take the train, if the train

is delayed three time consecutively, then go back home and take the bicycle. This

strategy is safe as it always reaches “work” within 58 minutes and its expectation

is ≈ 37, 45 minutes (so better than taking directly the bicycle).

Observe that this simple example already shows that, unlike the situation for
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home

station traffic

waiting
room

work

1
10

9
10

2
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7
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1
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train
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car
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back home
2

bicycle
45

delay
1

wait
3

light
20

medium
30

heavy
70

departs
35

Figure 11.2: Beyond worst-case shortest path - P1 wants to minimize its expected
time to reach “work”, but while ensuring it is less than an hour in all cases.

classical games and MDPs, strategies using memory are strictly more powerful

than memoryless ones. Our algorithms are able to decide the existence of (and

synthesize) such finite-memory strategies. C

11.1.1 Notions of Risk-Avoidance

Our BWC problems generalize the corresponding problems for two-player games

(worst-case threshold problem) and MDPs (expected value threshold problem).

Our strategies are strongly risk averse: they avoid at all cost outcomes below

a given threshold (no matter their probability), and inside the set of those safe

strategies, we maximize expectation. To the best of our knowledge, we are the

first to consider such strategies.

Other notions of risk have been studied for MDPs: e.g., in [WL99], the

authors want to find policies minimizing the probability (risk) that the total

discounted rewards do not exceed a specified value; in [FKR95], the authors

want to achieve a specified value of the long-run limiting average reward at a
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given probability level (percentile). While those strategies limit risk, they only

ensure low probability for bad behaviors but not their absence, furthermore, they

do not ensure good expectation either.

Another body of related work is the study of strategies in MDPs that achieve

a trade-off between expectation and variance over the outcomes (e.g., [BCFK13]

for the mean-payoff, [MT11] for the cumulative reward), giving a statistical mea-

sure of the stability of the performance. In our setting, we strengthen this

requirement by asking for strict guarantees on individual outcomes, while main-

taining an appropriate expected payoff.

11.1.2 Assumptions and Additional Notations

As usual, we take some time to discuss assumptions taken in Part IV and intro-

duce needed additional notations.

General strategies. The most general class of strategies that we consider is

the one of possibly infinite-memory and randomized strategies, denoted Λ. We

recall that several subclasses of particular interest are defined in Sect. 2.1.3.

One-dimension games. Throughout Part IV, we restrict our study to one-

dimension games. Studying the BWC framework for the more general setting of

multi-dimension games is a challenging future work.

Infimum mean-payoff. With regard to the mean-payoff setting, we only study

the infimum variant of the value function defined in Sect. 2.3.2. Since we mostly

deal with finite-memory strategies, this is not restrictive.

Nevertheless, in Sect. 12.7, we show that there is an interesting gap when

infinite-memory strategies are considered in the BWC mean-payoff setting. It

yields several interesting open questions, and considering the supremum variant

of the objective is one of them.

Explicit reference to underlying graphs. Throughout Part IV, we often

have to switch from games to MDPs and from MDPs to Markov chains, by

fixing strategies for the players, as discussed in Sect. 2.1.6. We then need to

be able to refer easily to the corresponding underlying graphs, which may be

expanded by the product with SOMMs, as depicted in Fig. 2.5. Therefore, we

use the notations of games, MDPs and MCs where those graphs are explicit. For

example, G = (G, S1, S2) is a game, with G = (S,E,w) its underlying graph.
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MDPs with edges of probability zero. Recall the definition of MDP as

P = (G, S1, S∆,∆), given in Sect. 2.1.4. In contrast to some other classical defi-

nitions of MDPs in the literature, we explicitly allow that, for some states s ∈ S∆,

Supp(∆(s)) ( Succ(s): some edges of the graph G are assigned probability zero

by the transition function.

This is important as far as modeling is concerned, as in our context, transition

functions will be defined according to a stochastic model for the environment of

a system, and we cannot reasonably assume that such a model always involves

all the possible actions of the environment. Consequently, given the MDP P , we

define the subset of edges E∆ = {(s1, s2) ∈ E | s1 ∈ S∆ ⇒ s2 ∈ Supp(∆(s1))},
representing all edges that either start in a state of P1, or are chosen with non-

zero probability by the transition function ∆.

End-components. We define end-components of an MDP as subgraphs in

which P1 can ensure to stay despite stochastic states [dA97,BK08].

Definition 11.2. Let P = (G, S1, S∆,∆) be an MDP, with G = (S,E,w) its

underlying graph. An end-component (EC) in P is a set U ⊆ S such that (i) the

subgraph (U,E∆∩(U×U)) is strongly connected, with E∆ defined as before, i.e.,

stochastic edges with probability zero are treated as non-existent; and (ii) for all

s ∈ U ∩ S∆, Supp(∆(s)) ⊆ U , i.e., in stochastic states, all outgoing edges either

stay in U or belong to E \E∆ (that is, the probability of leaving U from a state

s ∈ S∆ is zero). The set of all ECs of P is denoted E ⊆ 2S .

11.1.3 Overview of Results

We study the BWC synthesis problem for two important quantitative settings:

the mean-payoff and the shortest path. In both cases, we show how to decide the

existence of finite-memory strategies satisfying the problem and how to synthe-

size one if one exists. We establish algorithms and we study complexity bounds

and memory requirements. Our main results are the following.

First, for the mean-payoff, we provide an algorithm that requires polynomial

time plus polynomial calls to an oracle for the worst-case threshold problem.

Thus the BWC problem is in NP∩coNP (Thm. 12.1), and would be in P if mean-

payoff games were proved to be in P, a long-standing open problem. Hence, we

enrich the modeling and reasoning power over strategies without negative impact



11.1 – Introduction 183

on the complexity class of the decision problem. Pseudo-polynomial memory

may be necessary and always suffices (Thm. 12.35). While some memory is

necessary, we show that elegantly implementable strategies suffice, constructed

using clever alternation between pure memoryless strategies based on intuitive

counters. Finally, we observe that infinite-memory strategies are strictly more

powerful that finite-memory strategies (Sect. 12.7).

worst-case expected value BWC

complexity NP ∩ coNP P-complete
NP ∩ coNP

(Thm. 12.1)

memory pure memoryless
pure pseudo-poly.

(Thm. 12.35)

Table 11.1: Overview of decision problem complexities and memory requirements
for winning strategies of the first player in games (worst-case), MDPs (expected
value) and the BWC setting (combination), for the mean-payoff.

Second, for the shortest path, we provide a pseudo-polynomial-time algorithm

(Thm. 13.3). We show that the associated decision problem is inherently harder

than the worst-case and expected value threshold problems taken separately, as

it is NP-hard (Thm. 13.6). Pseudo-polynomial memory may be necessary and

always suffices (Thm. 13.4). In the case of the shortest path problem, infinite-

memory strategies grant no additional power in comparison with finite-memory

strategies (Rem. 13.5).

worst-case expected value BWC

complexity P-complete
pseudo-poly./NP-hard

(Thm. 13.3/Thm. 13.6)

memory pure memoryless
pure pseudo-poly.

(Thm. 13.4)

Table 11.2: Overview of decision problem complexities and memory requirements
for winning strategies of the first player in games (worst-case), MDPs (expected
value) and the BWC setting (combination), for the shortest path.
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11.2 Beyond Worst-Case Synthesis Problem

We here define the beyond worst-case synthesis problem. Our goal is to study the

synthesis of finite-memory strategies that, simultaneously, ensure a value greater

than some threshold µ in the worst-case situation (i.e., against any strategy of

the adversary), and ensure an expected value greater than some threshold ν

against a given finite-memory stochastic model of the adversary (e.g., represent-

ing commonly observed behavior of the environment).

Definition 11.3. Given a game G = (G, S1, S2), with G = (S,E,w) its underly-

ing graph, an initial state sinit ∈ S, a finite-memory stochastic model λstoch2 ∈ ΛF2
of the adversary, represented by a stochastic output Moore machine, a measur-

able value function f : Plays(G) → R ∪ {−∞, ∞}, and two rational thresholds

µ, ν ∈ Q, the beyond worst-case (BWC) problem asks to decide if P1 has a

finite-memory strategy λ1 ∈ ΛF1 such that{
∀λ2 ∈ Λ2, ∀π ∈ OutsG(sinit, λ1, λ2), f(π) > µ (11.1)

EG[λ1,λstoch2 ]
sinit (f) > ν (11.2)

and the BWC synthesis problem asks to synthesize such a strategy if one exists.

We take the convention to ask for values strictly greater than the thresholds

in order to ease the formulation of our results in the following. Indeed, we will

show that for some thresholds, it is possible to synthesize strategies that ensure

ε-close values, for any ε > 0, while it is not feasible to achieve the exact threshold

(Sect. 12.7). By using the strict inequality in this definition, we avoid tedious

manipulation of such ε in our proofs.

Notice that we can assume ν > µ, otherwise the problem reduces to the clas-

sical worst-case analysis as follows. Assume µ ≥ ν and λpm1 ∈ ΛPM1 satisfies the

worst-case threshold (recall memory is not necessary for the worst-case require-

ment alone). Consider the MC G[λpm1 , λstoch2 ]. By eq. (11.1) and Lemma 2.16,

we have that for all π ∈ OutsG[λpm1 ,λstoch2 ](sinit), f(π) > µ. Hence, regardless of

how the probability is defined in the MC, we have that EG[λpm1 ,λstoch2 ]
sinit (f) > µ ≥ ν

and eq. (11.2) is trivially satisfied.



CHAPTER 12
Beyond Worst-Case Mean-Payoff

In a Nutshell � Preprocessing � End-Components Analysis � Inside Winning

ECs � Global Strategy � Complexity and Memory Bounds � Infinite Memory

We present an algorithm, BWC MP (Alg. 12.1), for deciding the BWC mean-

payoff problem. Its cornerstones are highlighted in Sect. 12.1.1 and a running

example is presented in Sect. 12.1.2.

Sections 12.2 through 12.5 are devoted to a detailed justification of this al-

gorithm and the proof of its correctness.

In Sect. 12.6.1, we prove that the problem is in NP ∩ coNP and that this is

optimal with regard to the complexity of the worst-case problem. In Sect. 12.6.2,

we prove that pseudo-polynomial memory is sufficient and in general necessary

for finite-memory strategies satisfying the BWC mean-payoff problem.

Finally, we show in Sect. 12.7 that infinite-memory strategies are strictly

more powerful than finite-memory ones for P1. This is in contrast with the

worst-case and the expected value settings, where memoryless strategies suffice.

This chapter is based on several joint publications with Bruyère, Filiot and

Raskin [BFRR13,BFRR14a,BFRR14b].
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12.1 In a Nutshell

12.1.1 The Approach in a Nutshell

Algorithm BWC MP is described in Alg. 12.1. We give an intuitive sketch of

its functioning in the following.

Inputs and outputs. The algorithm takes as input: a game Gi, a finite-

memory stochastic model of the adversary λi2, a worst-case threshold µi, an

expected value threshold νi, and an initial state siinit. Its output is Yes if and

only if there exists a finite-memory strategy of P1 satisfying the BWC problem

(Def. 11.3).

The output as described in Alg. 12.1 is boolean: the algorithm answers

whether a satisfying strategy exists or not, but does not explicitely construct it

(to avoid tedious formalization within the pseudocode). Nevertheless, we present

how to synthesize such a winning strategy in Sect. 12.5. We sketch its operation

in the following and we highlight the role of each step of the algorithm in the

construction of this winning strategy, as producing a witness winning strategy

is a straightforward by-product of the process we apply to decide satisfaction of

the BWC problem.

Preprocessing. The first part of the algorithm (lines 1 through 10) is dedicated

to the preprocessing of the game Gi and the stochatic model λi2 given as inputs

in order to apply the second part of the algorithm (lines 11 through 17) on a

modified game G and stochastic model λstoch2 , simpler to manipulate. We show

in the following that the answer to the BWC problem on the modified game

is Yes if and only if it is also Yes on the input game, and we present how a

winning strategy of P1 in G can be transferred to a winning strategy in Gi.

The preprocessing is composed of four main steps. First, we modify the

weight function of Gi in order to consider the equivalent BWC problem with

thresholds (0, ν) instead of (µi, νi). This classical trick is used to get rid of

explicitely considering the worst-case threshold in the following, as it is equal to

zero.

Second, observe that any strategy that is winning for the BWC problem must

also be winning for the classical worst-case problem. Such a strategy cannot allow

visits of any state from which P1 cannot ensure winning against an antagonistic
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Algorithm 12.1 BWC MP(Gi, λi2, µ
i, νi, siinit)

Require: Gi =
(
Gi, Si1, Si

2

)
a game, Gi =

(
Si, Ei, wi

)
its underlying graph,

λi2 ∈ ΛF2 (Gi) a finite-memory stochastic model of the adversary, M(λi2) =
(Mem,m0, αu, αn) its SOMM, µi = a

b , ν
i ∈ Q, µi < νi, resp. the worst-case and

the expected value thresholds, and siinit ∈ Si the initial state

Ensure: The answer is Yes if and only if P1 has a finite-memory strategy λ1 ∈ ΛF1 (Gi)
satisfying the BWC problem from siinit, for the thresholds pair (µi, νi) and the mean-
payoff value function

{Preprocessing}
1: if µi 6= 0 then
2: Modify the weight function of Gi s.t. ∀ e ∈ Ei, winew(e) := b · wi(e) − a, and

consider the new thresholds pair (0, ν := b · νi − a)

3: Compute

SWC :=
{
s ∈ Si | ∃λ1 ∈ Λ1(Gi), ∀λ2 ∈ Λ2(Gi),

∀π ∈ OutsGi(s, λ1, λ2), MP(π) > 0
}

4: if siinit 6∈ SWC then
5: return No

6: else
7: Let Gw := Gi � SWC be the subgame induced by worst-case winning states

8: Build G := Gw ⊗M(λi2) = (G, S1, S2), G = (S,E,w), S ⊆ (SWC ×Mem), the
game obtained by product with the SOMM, and sinit := (siinit,m0) the correspond-
ing initial state

9: Let λstoch2 ∈ ΛM2 (G) be the memoryless transcription of λi2 on G

10: Let P := G[λstoch2 ] = (G, S1, S∆ = S2,∆ = λstoch2 ) be the MDP obtained from G
and λstoch2

{Main algorithm}
11: Compute Uw the set of maximal winning end-components of P

12: Build P ′ = (G′, S1, S∆,∆), where G′ = (S,E,w′) and w′ is defined as follows:

∀ e = (s1, s2) ∈ E, w′(e) :=

{
w(e) if ∃ U ∈ Uw s.t. {s1, s2} ⊆ U
0 otherwise

13: Compute the maximal expected value ν∗ from sinit in P ′

14: if ν∗ > ν then
15: return Yes

16: else
17: return No
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adversary because mean-payoff is a prefix-independent objective (hence it is not

possible to “win” it over the finite prefix up to such a state). Thus, we reduce our

study to Gw, the subgame induced by worst-case winning states in Gi (lines 3

and 7). Obviously, if from the initial state siinit, P1 cannot win the worst-case

problem, then the answer to the BWC problem is No (lines 4-5).

Third, we build the game G which states are defined by the product of the

states of Gw and the memory elements of the stochastic output Moore ma-

chine M(λi2) (line 8). Intuitively, we expand the initial game by integrating the

memory of the stochastic model of P2 in the graph. Note that this does not

modify the power of the adversary.

Fourth, the finite-memory stochastic model λi2 on Gi clearly translates to

a memoryless stochastic model λstoch2 on G (line 9). This will help us obtain

elegant proofs for the second part of the algorithm.

Analysis of end-components. The second part (lines 11-17) hence operates

on a game G such that from all states, P1 has a strategy to achieve a strictly

positive mean-payoff value (recall µ = 0). We consider the MDP P = G[λstoch2 ]

and notice that the underlying graphs of G and P are the same thanks to λstoch2

being memoryless. The following steps rely on the analysis of end-components

in the MDP, i.e., strongly connected subgraphs in which P1 can ensure to stay

when playing against the stochastic adversary (Def. 11.2).

The motivation to the analysis of ECs is the following. It is well-known that

under any arbitrary strategy λ1 ∈ Λ1 of P1 in P , the probability that states

visited infinitely often along an outcome constitute an EC is one [CY95, dA97].

Recall that the mean-payoff is prefix-independent, therefore the value of any

outcome only depends on those states that are seen infinitely often. Hence, the

expected mean-payoff in P [λ1] depends uniquely on the value obtained in the

ECs. Inside an EC, we can compute the maximal expected value that can be

achieved by P1, and this value is the same in all states of the EC [FV97].

Consequently, in order to satisfy the expected value requirement (eq. (11.2)),

an acceptable strategy for the BWC problem has to favor reaching ECs with a

sufficient expectation, but under the constraint that it should also ensure satis-

faction of the worst-case requirement (eq. (11.1)). As we show in the following,

this constraint implies that some ECs with high expected values may still need to

be avoided because they do not permit to guarantee the worst-case requirement.
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This is the cornerstone of the classification of ECs that follows.

Classification of end-components. Recall that E ⊆ 2S denotes the set of all

ECs in P . Notice that by definition, only edges in E∆, as defined in Sect. 11.1.2,

are involved to determine which sets of states form an EC in P . As such, for

any EC U ∈ E , there may exist edges from E \ E∆ starting in U , such that P2

can force leaving U when using an arbitrary strategy. Still these edges will never

be used by the stochastic model λstoch2 . This remark will be important to the

definition of strategies of P1 that guarantee the worst-case requirement, as P1

needs to be able to react to the hypothetic use of such an edge. We will see that

it is also the case inside an EC.

Now, we want to consider the ECs in which P1 can ensure that the worst-case

requirement will be fulfilled (i.e., without having to leave the EC): we call them

winning ECs. Indeed, the others will need to be eventually avoided, hence will

have zero impact on the expectation of a finite-memory strategy satisfying the

BWC problem. So we call the latter losing ECs. The subtlety of this classication

is that it involves considering the ECs both in the MDP P , and in the game G.

Formally, let U ∈ E be an EC. It is winning if, in the subgame G � U , from

all states, P1 has a strategy to ensure a strictly positive mean-payoff against any

strategy of P2 that only chooses edges which are assigned non-zero probability

by λstoch2 , or equivalently, edges in E∆. We denote W ⊆ E the set of such ECs.

Non-winning ECs are losing : in those, whatever the strategy of P1 played against

the stochastic model λstoch2 (or any strategy with the same support), there exists

at least one outcome for which the mean-payoff is not strictly positive (even if

its probability is zero, its mere existence is not acceptable for the worst-case

requirement).

Maximal winning end-components. Based on these definitions, observe that

line 11 of algorithm BWC MP does not actually compute the set W containing

all winning ECs, but rather the set Uw ⊆ W, defined as Uw = {U ∈ W | ∀U ′ ∈
W, U ⊆ U ′ ⇒ U = U ′}, i.e., the set of maximal winning ECs.

The intuition on why we can restrict our study to this subset is as follows.

If an EC U1 ∈ W is included in another EC U2 ∈ W, i.e., U1 ⊆ U2, we have

that the maximal expected value achievable in U2 is at least equal to the one

achievable in U1. Indeed, P1 can reach U1 with probability one (by virtue of U2

being an EC and U1 ⊆ U2) and stay in it forever with probability one (by virtue
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of U1 being an EC): hence the expectation of such a strategy would be equal

to what can be obtained in U1 thanks to the prefix-independence of the mean-

payoff. This property implies that it is sufficient to consider maximal winning

ECs in our computations.

As for why we do it, observe that the complexity gain is critical. The number

of winning ECs can be as large as |W| ≤ |E| ≤ 2|S|, that is, exponential in

the size of the input. Yet, the number of maximal winning ECs is bounded by

|Uw| ≤ |S| as they are disjoint by definition. Indeed, for any two winning ECs

with a non-empty intersection, their union also constitutes an EC, and is still

winning because P1 can essentially stick to the EC of his choice.

The computation of the set Uw is executed by a recursive subalgorithm which

is in NP ∩ coNP. Roughly sketched, this algorithm computes the maximal end-

component decomposition of an MDP (in polynomial time [CH12]), then checks

for each EC U in the decomposition (their number is polynomial) if U is winning

or not, which requires a call to an NP ∩ coNP oracle solving the worst-case

threshold problem on the corresponding subgame. If U is losing, it may still be

the case that a sub-EC U ′ ( U is winning. Therefore we recurse on the MDP

reduced to U , where states from which P2 can win in U have been removed (they

are a no-go for P1). Hence the stack of calls is also at most polynomial.

Ensure reaching winning end-components. As discussed, under any arbi-

trary strategy of P1, states visited infinitely often form an EC with probability

one. Now, if we take a finite-memory strategy that satisfies the BWC problem

(Def. 11.3), we can precise this result and state that they form a winning EC

with probability one. Equivalently, we have that the probability that an out-

come π is such that Inf(π) = U for some U ∈ E \ W is zero. The equality is

crucial. It may be the case, with non-zero probability, that Inf(π) = U ′ ( U for

some U ′ ∈ W and U ∈ E \W (hence the recursive algorithm to compute Uw). It

is clear that P1 should not visit all the states of a losing EC forever, as then he

would not be able to guarantee the worst-case threshold inside the corresponding

subgame.1

We denote Sneg = S \
⋃
U∈Uw

U the set of states that, with probability one,

are only seen a finite number of times when a BWC satisfying strategy is played,

1We show in Sect. 12.7 that with infinite memory, there may still be some incentive to stay
in a losing EC.
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and call them negligible states.

Our ultimate goal here is to build a modified MDP P ′, sharing the same

underlying graph and ECs as P , such that a classical optimal strategy for the

expected value problem on P ′ will naturally avoid losing ECs and prescribe which

winning ECs are the most interesting to reach for a BWC strategy on the initial

game G and MDP P . Observe that the expected value obtained in P by any

BWC satisfying strategy of P1 only depends on the weights of edges involved in

winning ECs, or equivalently, in maximal winning ECs (as the set of outcomes

that are not trapped in them has measure zero). Consequently, we build P ′ by

modifying the weight function of P (line 12). Basically, we keep the weights

unchanged in edges that belong to some U ∈ Uw, and we put them to zero

everywhere else, i.e., on any edge involving a negligible state. Weight zero is

taken because it is lower than the expectation granted by winning ECs, which

is strictly greater than zero by definition.

Reach the highest valued winning end-components. We compute the

maximal expected mean-payoff ν∗ that can be achieved by P1 in the MDP P ′,

from the corresponding initial state (line 13). This computation takes polynomial

time and memoryless strategies suffice to achieve the maximal value (Sect. 2.3.2).

As discussed before, such a strategy reaches an EC of P ′ with probability

one. Basically, we build a strategy that favors reaching ECs with high associated

expectations in P ′.

We argue that the ECs reached with probability one by this strategy are

necessarily winning ECs. Clearly, if a winning EC is reachable instead of a

losing one, it will be favored because of the weights definition in P ′ (expectation

is strictly higher in winning ECs). Thus it remains to check if the set of winning

ECs is reachable with probability one from any state in S. That is the case

because of the preprocessing. Indeed, we know that all states are winning for

the worst-case requirement. Clearly, from any state in A = S \
⋃
U∈E U , P1

cannot ensure to stay in A (otherwise it would form an EC) and thus must be

able to win the worst-case requirement from reached ECs. Now for any state

in B =
⋃
U∈E U \

⋃
U∈Uw

U , i.e., states in losing ECs and not in any sub-EC

winning, P1 cannot win the worst-case by staying in B, by definition of losing

EC. Since we know P1 can ensure the worst-case by hypothesis, it is clear that

he must be able to reach C =
⋃
U∈Uw

U from any state in B, as claimed.
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Inside winning end-components. Based on that, winning ECs are reached

with probability one. Let us first consider what we can say about such ECs if we

assume that E∆ = E, i.e., if the stochastic model maps all possible edges to non-

zero probabilities. We establish a finite-memory combined strategy of P1 that

ensures (i) worst-case satisfaction while yielding (ii) an expected value ε-close to

the maximal expectation inside the component.

For two well-chosen parameters K,L ∈ N, it is informally defined as follows:

in phase (a), play a memoryless expected value optimal strategy for K steps

and memorize Sum ∈ Z, the sum of weights along these steps; in phase (b), if

Sum > 0, go to (a), otherwise play a memoryless worst-case optimal strategy

for L steps, then go to (a). In phases (a), P1 tries to increase its expectation

and approach its optimal one, while in phase (b), he compensates, if needed,

losses that occured in phase (a).

The two memoryless strategies exist on the subgame induced by the EC: by

definition of ECs, based on E∆, the stochastic model of P2 will never be able to

force leaving the EC against the combined strategy.

A key result of our paper is the existence of values for K and L such that (i)

and (ii) are verified. We see plays as sequences of periods, each starting with

phase (a). First, for any K, it is possible to define L(K) such that any period

composed of phases (a) + (b) ensures a mean-payoff at least 1/(K + L) > 0.

Periods containing only phase (a) trivially induce a mean-payoff at least 1/K

as they are not followed by phase (b). Both rely on the weights being integers.

As the length of any period is bounded by (K + L), the inequality remains

strict for the mean-payoff of any play, granting (i). Now, consider parameter K.

Clearly, when K → ∞, the expectation over a phase (a) tends to the optimal

one. Nevertheless, phases (b) also contribute to the overall expectation of the

combined strategy, and (in general) lower it so that it is strictly less than the

optimal for any K,L ∈ N. Hence to prove (ii), we not only need that the

probability of playing phase (b) decreases when K increases, but also that it

decreases faster than the increase of L, needed to ensure (i), so that overall,

the contribution of phases (b) tends to zero when K → ∞. This is indeed the

case and is proved using results bounding the probability of observing a mean-

payoff significantly (more than some ε) different than the optimal expectation

along a phase (a) of length K ∈ N: this probability decreases exponentially
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when K increases [GO02,Tra09] (related to the notions of Chernoff bounds and

Hoeffding’s inequality in MCs), while L only needs to be polynomial in K.

Now, consider what happens if E∆ ( E. Then, if P2 uses an arbitrary

strategy, he can take edges of probability zero, i.e., in E \ E∆, either staying

in the EC, or leaving it. In both cases, this must be taken into account in

order to satisfy eq. (11.1) as it may involve dangerous weights (recall that zero-

probability edges are not considered when an EC is classified as winning or

not). Fortunately, if this were to occur, P1 could switch to a worst-case winning

memoryless strategy, which exists in all states thanks to the preprocessing, to

preserve the worst-case requirement. Regarding the expected value (eq. (11.2)),

this has no impact as it occurs with probability zero against λstoch2 . The strategy

to follow in winning ECs hence adds this reaction procedure to the combined

strategy: we call it the witness-and-secure strategy.

Global strategy synthesis. In summary, (a) losing ECs should be avoided

and will be by a strategy that optimizes the expectation on the MDP P ′; (b) in

winning ECs, P1 can obtain the expectation of the EC (at some arbitrarily low ε

close) and ensure the worst-case threshold.

Hence, we finally compare the value ν∗ with the expected value threshold ν

(line 14): (i) if it is strictly higher, we conclude that there exists a finite-memory

strategy satisfying the BWC problem, and (ii) if it is not, we conclude that there

does not exist such a strategy.

To prove (i), we establish a finite-memory strategy in G, called global strat-

egy, of P1 that ensures a strictly positive mean-payoff against an antagonistic

adversary, and ensures an expected mean-payoff ε-close to ν∗ (hence, strictly

greater than ν) against the stochastic adversary modeled by λstoch2 (i.e., in P ).

The intuition is as follows. We play the memoryless optimal strategy of the

MDP P ′ for a sufficiently long time, defined by a parameter N ∈ N, in order to

be with probability close to one in a winning EC (the convergence is exponential

by results on absorption times in MCs [GS97]). Then, if we are inside a winning

EC, we switch to the witness-and-secure strategy which, as sketched in the pre-

vious paragraph, ensures the worst-case and the expectation thresholds. If we

are not yet in a winning EC, then we switch to a worst-case winning strategy

in G, which always exists by hypothesis. Thus the mean-payoff of plays that do

not reach winning ECs is strictly positive. Since in winning ECs we are ε-close
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to the maximal expected value of the EC, we can conclude that it is possible to

play the optimal expectation strategy of MDP P ′ for sufficiently long to obtain

an overall expected value which is arbitrarily close to ν∗, and still guarantee the

worst-case threshold in all outcomes.

To prove (ii), it suffices to understand that only ECs have an impact on the

expectation, and that losing ECs cannot be used forever without endangering the

worst-case requirement. Note that given a winning strategy on G, it is possible

to build a corresponding winning strategy on Gi by reintegrating the memory

elements of the SOMM in the memory of the winning strategy of P1.

Complexity bounds. The input size of the algorithm depends on the size of

the game, the size of the SOMM for the stochastic model, and the encodings of

weights and thresholds. We can prove that all computing steps require (deter-

ministic) polynomial time except for calls to an algorithm solving the worst-case

threshold problem, which is in NP∩coNP and not known to be in P (Sect. 2.3.2).

Hence, the overall complexity of the algorithm is in NP∩coNP and may collapse

to P if the worst-case problem were to be proved in P.

We also establish that the BWC problem is at least as difficult as the worst-

case problem thanks to a polynomial-time reduction from the latter to the former.

Thus, BWC MP membership to NP ∩ coNP can be seen as optimal regarding

our current knowledge of the worst-case threshold problem.

Theorem 12.1. The beyond worst-case problem for the mean-payoff value func-

tion is in NP∩ coNP and at least as hard as deciding the winner in mean-payoff

games.

Remark 12.2 (approximation of the optimal value). Given a worst-case thresh-

old µ ∈ Q, a natural question is whether we can maximize the expectation of

finite-memory strategies that satisfy this threshold. However, there is no best

expectation value in general, as increasing the size of the memory may also

strictly increase the expectation. Nevertheless, the least upper bound of all the

expected value thresholds that can be achieved by finite-memory strategies can

be approached up to an ε, for all ε > 0. Formally, assume that the worst-case

threshold µ can be satisfied, and let ν> be the least upper bound of the set

{ν ∈ Q | ∃λ1 ∈ ΛPF1 that satisfies the BWC problem for thresholds (µ, ν)} (it

exists since this set is trivially bounded by W and it is non-empty). Without
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knowing ν> a priori, it is still possible to approach it ε-closely, for all ε > 0, by a

dichotomic search with a polynomial (in V = log2W , the length of the encoding

of weights) number of steps, initialized to the interval [µ,W ]. C

12.1.2 Running Example
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Figure 12.1: Mean-payoff game with maximal winning ECs U2 and U3. End-
component U1 is losing.

In order to illustrate several notions and strategies, we will consider the

game depicted in Fig. 12.1 throughout this chapter. The stochastic model of P2

is memoryless and is described by the probabilities written close to the start of

outgoing edges. For example, in s2, the stochastic model chooses edge (s2, s1)

with probability 1/2 and edge (s2, s3) with probability 1/2.

Formally, our definition of the set E allows only one edge from any given

state s to any state s′, hence asks that multiple edges with different values be

split by adding dummy states (states with exactly one ingoing edge and one

outgoing edge). Note that in order to preserve the same mean-payoff values for

paths in the graph, we need to split every edge and copy its weight in both halfs.

This restriction is w.l.o.g. and applied for the sake of readability in technical
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proofs. Still, our graphical representation oversteps it to maintain compactness.

We consider the BWC problem with the worst-case threshold µ = 0. Observe

that this game satisfies the assumptions guaranteed at the end of the preprocess-

ing part of the algorithm. That is, the worst-case threshold is zero, a worst-case

winning strategy of P1 exists in all states (e.g., the memoryless strategy choosing

edges (s1, s9), (s3, s5), (s6, s9), (s9, s10) and (s10, s9) in their respective starting

states), and the stochastic model is memoryless, as explained above.

12.2 Preprocessing - Simplifying Assumptions

We discuss here the preprocessing part of the algorithm (lines 1-10). The goal

is to be able to execute the main algorithm (lines 11-17) with the following

hypotheses: (a) the worst-case threshold is zero, (b) in all states, P1 has a

strategy to satisfy the worst-case requirement, and (c) the stochastic model of

the adversary is memoryless.

This preprocessing is sound and complete: P1 has a strategy for the BWC

problem in the input Gi (for thresholds (µi, νi) and against stochastic model λi2)

if and only if he also has one in the preprocessed game G (for thresholds (0, ν)

and against stochastic model λstoch2 ). We break down the proof in three lemmas,

one for each hypothesis.

Thresholds. First, Lemma 12.3 states that the worst-case threshold can be

taken equal to zero by a slight modification of the weight function (lines 1-2).

From now on, we thus assume that µ = 0.

Lemma 12.3. Let G = (G, S1, S2) be a two-player game, G = (S,E,w) its

underlying graph, sinit ∈ S the initial state, λf2 ∈ ΛF2 a finite-memory stochastic

model of P2, and (µ = a
b , ν) ∈ Q2 a pair of thresholds, with a ∈ Z and b ∈ N0.

Then P1 has a satisfying strategy for the BWC mean-payoff problem in G if

and only if P1 has a satisfying strategy when considering the thresholds pair

(0, ν ′ = b·ν−a) and the weight function w′ such that ∀ e ∈ E, w′(e) = b·w(e)−a.

Proof. Recall the mean-payoff of a play is defined as the (infimum) limit of the

mean weight over prefixes of increasing length. Hence, the affine transformation

applied on weights carries over to play values: for all π ∈ Plays(G), we have that

MPw′(π) = b ·MPw(π) − a, where the subscript denotes which weight function
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we consider. Let λ1 ∈ Λ1 be a strategy of P1. First, consider the worst-case

requirement of eq. (11.1). We claim that

∀λ2 ∈ Λ2, ∀π ∈ OutsG(sinit, λ1, λ2), MPw(π) > µ =
a

b

m
∀λ2 ∈ Λ2, ∀π ∈ OutsG(sinit, λ1, λ2), MPw′(π) > 0.

This is trivial by applying the affine transformation. Second, consider the ex-

pected value requirement of eq. (11.2). We claim that

EG[λ1,λ
f
2 ]

sinit (MPw) > ν ⇐⇒ EG[λ1,λ
f
2 ]

sinit (MPw′) > ν ′ = b · ν − a.

The expected value operator is well-known to be linear. Thus, by extracting the

affine transformation, we obtain that EG[λ1,λ
f
2 ]

sinit (MPw′) = b · EG[λ1,λ
f
2 ]

sinit (MPw) − a,

which proves our point and concludes the proof.

Worst-case winning. Second, we prove in Lemma 12.4 that a necessary con-

dition for a strategy to satisfy the BWC problem is to avoid visiting states that

are losing for the worst-case mean-payoff requirement. This justifies lines 3-7 of

the algorithm. Observe that the graph of Gw = Gi � SWC contains no dead-

lock as otherwise it would contradict the fact that P1 can satisfy the worst-case

threshold problem from states in SWC in the game Gi. Also note that Gw[λi2]

remains a well-defined MDP as there exists no edge from states s ∈ Si2 ∩SWC to

states s′ ∈ S \ SWC, otherwise P2 could win the game from s by reaching s′, by

prefix-independence of the mean-payoff, and so s would no belong to SWC.

Lemma 12.4. Let G = (G, S1, S2) be a two-player game, G = (S,E,w) its

underlying graph, sinit ∈ S the initial state, λf2 ∈ ΛF2 a finite-memory stochastic

model of P2, and ν ∈ Q the expected value threshold. Let SWC ⊆ S be the set

of winning states for P1 for the worst-case threshold problem. If λ1 ∈ ΛF1 is a

satisfying strategy for the BWC mean-payoff problem, then

∀λ2 ∈ Λ2, ∀π ∈ OutsG(sinit, λ1, λ2), ∀ s ∈ S \ SWC, s 6∈ π. (12.1)
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Proof. Formally, let

SWC := {s ∈ S | ∃λ1 ∈ Λ1, ∀λ2 ∈ Λ2, ∀π ∈ OutsG(s, λ1, λ2), MP(π) > 0} .

We claim that a winning strategy of P1 for the BWC problem must avoid states

that are not in SWC and prove it by contradiction. Indeed, let λ1 ∈ ΛF1 be such a

strategy. Assume eq. (12.1) is false: there exist λ2 ∈ Λ2, π ∈ OutsG(sinit, λ1, λ2)

and s ∈ S \ SWC such that s ∈ π. By definition of SWC and determinacy

of mean-payoff games [EM79, Mar75], it is the case that in state s, P2 has a

winning strategy for the worst-case objective: there exists λ′2 ∈ Λ2 such that

for all λ′1 ∈ Λ1, there exists π′ ∈ OutsG(s, λ′1, λ
′
2) such that ¬(MP(π′) > 0), i.e.,

MP(π′) ≤ 0. Hence, consider the strategy λ′′2 of P2 that plays according to λ2

up to the first visit of s and according to λ′2 afterwards. Clearly, there exists

an outcome π′′ ∈ OutsG(sinit, λ1, λ
′′
2) such that π′′ = ρ · π′ and MP(π′) ≤ 0 for

some ρ ∈ Prefs(G). Since the mean-payoff objective is prefix-independent, we

have that MP(π′′) ≤ 0. Thus, the strategy λ1 of P1 does not satisfy eq. (11.1),

which contradicts the hypothesis and concludes the proof.

Memoryless stochastic model. Finally, we show in Lemma 12.5 that we

can study the equivalent BWC problem on the game obtained by product of

the original game and the SOMM of the stochastic model, using a memoryless

stochastic model instead of the finite-memory one (lines 8-10 of BWC MP).

Having a memoryless stochastic model proves useful in the main steps of the

algorithm (lines 11-17) as it guarantees that the game G and the MDP G[λstoch2 ]

possess the same underlying graph.

Lemma 12.5. Let G = (G, S1, S2) be a two-player game, G = (S,E,w) its un-

derlying graph, sinit ∈ S the initial state, λf2 ∈ ΛF2 (G) a finite-memory stochastic

model of P2, M(λf2) = (Mem,m0, αu, αn) its SOMM, and ν ∈ Q the expected

value threshold. Let G′ = G ⊗M(λf2) be the product game and λm2 ∈ ΛM2 (G′)

the memoryless transcription of λf2 on G′. The two following statements are

equivalent.

(a) P1 has a strategy to satisfy the BWC problem on G against the finite-memory

stochastic model λf2 .
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(b) P1 has a strategy to satisfy the BWC problem on G′ against the memoryless

stochastic model λm2 .

Proof. We define the product game G′ = G ⊗M(λf2) = (G′, S′1, S′2), with G′ =

(S′, E′, w′), as follows.

◦ S′ = S ×Mem, S′1 = S1 ×Mem, S′2 = S2 ×Mem;

◦ ∀ s1, s2 ∈ S, ∀m1,m2 ∈ Mem, ((s1,m1), (s2,m2)) ∈ E′ ⇔ (s1, s2) ∈ E ∧
αu(m1, s1) = m2;

◦ ∀ e = ((s1,m1), (s2,m2)) ∈ E′, w′(e) = w((s1, s2));

◦ s′init = (sinit,m0) is the new initial state.

Given the finite-memory stochastic model λf2 ∈ ΛF2 (G) of P2, we transcript it

into a memoryless strategy λm2 ∈ ΛM2 (G′) on the product game such that

∀ s1 ∈ S2, ∀ ((s1,m1), (s2,m2)) ∈ E′, λm2 ((s1,m1))((s2,m2)) = αn(m1, s1)(s2).

Basically, we have integrated the finite memory of λf2 into the states of G′ and

defined the remaining corresponding memoryless strategy λm2 on G′.

We first prove that (a) ⇒ (b). Assume λ1 ∈ ΛF1 (G) is a satisfying strategy

for the BWC problem on G, i.e., it satisfies eq. (11.1) and (11.2) against the

stochastic model λf2 . We build a corresponding strategy λ′1 ∈ ΛF1 (G′) that is

winning against λm2 in G′ as follows:

∀ ρ′ = (s0,m0)(s1,m1) . . . (sk,mk) ∈ Prefs1(G′), (sk+1,mk+1) ∈ S′

such that ((sk,mk), (sk+1,mk+1)) ∈ E′,
λ′1(ρ′) ((sk+1,mk+1)) = λ1(projS(ρ′))(sk+1).

Note that strategy λ′1 is well-defined as λ1 is. Consider the worst-case require-

ment of the BWC problem on G′, eq. (11.1). Let π′ ∈ OutsG′(s
′
init, λ

′
1) be any

outcome consistent with the newly defined strategy λ′1. By definition of λ′1, we

have that π = projS(π′) ∈ OutsG(sinit, λ1) is an outcome consistent with λ1 in G.

Hence, by hypothesis, we have that MP(π) > 0. By definition of w′, we have

that MPw′(π
′) = MPw(π), thus MP(π′) > 0 and the worst-case requirement is

satisfied. Now consider the expected value, eq. (11.2). By hypothesis, we have
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that EG[λ1,λ
f
2 ]

sinit (MP) > ν. We claim that EG
′[λ′1,λ

m
2 ]

s′init
(MP) > ν. Indeed, observe that

there is a bijection between outcomes in Outs
G[λ1,λ

f
2 ]

(sinit) and OutsG′[λ′1,λm2 ](s
′
init)

using the projection operator because the memory update function αu of the

SOMM M(λf2) is deterministic. As the values of plays are preserved by the

changes to w′ and the probability measures of cylinder sets are also preserved

by definition of λm2 , the claim is verified.

Second, we show that (b)⇒ (a). Assume λ′1 ∈ ΛF1 (G′) is a satisfying strategy

for the BWC problem on G′, against the stochastic model λm2 . We build a

corresponding strategy λ1 ∈ ΛF1 (G) that is winning against λf2 in G. Thanks to

the update function ofM(λf2) being deterministic, given a prefix ρ = s0s1 . . . sk ∈
Prefs(G), there is a unique corresponding prefix ρ′ ∈ Prefs(G′) such that ρ =

projS(ρ′). Hence we define λ1 as follows:

∀ ρ = s0s1 . . . sk ∈ Prefs1(G), sk+1 ∈ S such that (sk, sk+1) ∈ E,
λ1(ρ)(sk+1) = λ′1(ρ′)((sk+1,mk+1)),

with ρ′ = (s0,m0)(s1,m1) . . . (sk,mk) the unique prefix in Prefs1(G′) such that

ρ = projS(ρ′) and mk+1 = αu(mk, sk). Strategy λ1 is well-defined. Consider

the worst-case requirement. Let π ∈ OutsG(sinit, λ1) be any consistent outcome

and π′ the unique corresponding play in G′. By definition, π′ ∈ OutsG′(s
′
init, λ

′
1).

Hence, by construction, MP(π) = MP(π′), and by hypothesis, MP(π′) > 0, which

proves that λ1 satisfies eq. (11.1) in G. Finally, consider the expected value

requirement, eq. (11.2). Again, there is a bijection between Outs
G[λ1,λ

f
2 ]

(sinit)

and OutsG′[λ′1,λm2 ](s
′
init). Since weights and probability measures are preserved,

we have that EG[λ1,λ
f
2 ]

sinit (MP) = EG
′[λ′1,λ

m
2 ]

s′init
(MP) > ν. This concludes our proof that

assertions (a) and (b) are equivalent.

Note that given a satisfying strategy in the product game, the proof of

Lemma 12.5 describes how to obtain a corresponding satisfying strategy in the

original game. Hence, strategies obtained through algorithm BWC MP are pre-

served alongside the answer to the BWC problem when going back to the original

game.

We now study the main steps of algorithm BWC MP, assuming the simpli-

fying assumptions granted by the preprocessing.
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12.3 End-Components Analysis

12.3.1 Classification of End-Components

In the following, we consider a game G where all states are winning for the

worst-case requirement (eq. (11.1)), a memoryless stochastic model λstoch2 ∈ ΛM2 ,

and P = G[λstoch2 ], the MDP obtained when this stochastic model is followed

by P2. As sketched in Sect. 12.1.1, the crux of the algorithm is the analysis of

the end-components of P .

Long-run appearance of end-components. Lemma 12.6 recalls a well-

known property of MDPs: under any arbitrary strategy of P1, the set of states

visited infinitely often along a play almost-surely constitutes an EC. Notice the

abuse of notation as discussed in Sect. 2.1.6.

Lemma 12.6 ([CY95, dA97]). Let P = (G, S1, S∆,∆) be an MDP, with G =

(S,E,w) its underlying graph, E ⊆ 2S the set of its end-components, sinit ∈ S
the initial state, and λ1 ∈ Λ1(P ) an arbitrary strategy of P1. Then, we have that

PP [λ1]
sinit

(
{π ∈ OutsP [λ1](sinit) | Inf(π) ∈ E}

)
= 1.

Hence the expected value EP [λ1]
sinit (MP) depends exclusively on the values of

end-components (because the mean-payoff of any play belongs to [−W,W ] and

thus the value of plays not entering ECs, which set has probability measure zero,

cannot be infinite).

Winning end-components. First, we introduce some notations. We respec-

tively denote G∆ and P∆ the game and MDP where the underlying graph is lim-

ited to the subset of edges which are assigned non-zero probability by ∆ = λstoch2 ,

i.e., E∆ ⊆ E. By definition, ECs are computed with regard to E∆, hence the

ECs of P∆ are exactly equal to the ECs of P . Moreover, we have that

Λ2(G∆) =
{
λ2 ∈ Λ2(G) | ∀ ρ · s ∈ Prefs2(G), Supp(λ2(ρ · s)) ⊆ Supp(∆(s))

}
,

whereas available choices are unchanged for P1 in G∆ as edges in E \E∆ all start

in states of P2.

Using these notations, we now define winning ECs as the ECs U ∈ E where P1

can ensure satisfaction of the worst-case requirement in the corresponding sub-
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game G∆ � U . Note that we consider G∆ as we only need to consider strategies

of P2 that share the support of the stochastic model. That is because our goal

is to ensure that P1 can benefit from (the maximal expectation achievable in)

these ECs, which is only safe with regard to the worst-case requirement if P1

can force that all outcomes that may occur when facing the stochastic model

yield a strictly positive mean-payoff. Note that reacting to an arbitrary strategy

of P2, i.e., a strategy in Λ2(G), as required in eq. (11.1), will be considered in

the following sections: for now we only care about λstoch2 and satisfaction of the

expected value requirement as specified in eq. (11.2).

Definition 12.7. Let G = (G, S1, S2) be a two-player game, G = (S,E,w)

its underlying graph, λstoch2 ∈ ΛM2 a memoryless stochastic model of P2, P =

G[λstoch2 ] = (G, S1, S∆ = S2,∆ = λstoch2 ) the resulting MDP and G∆ the game

reduced to non-zero probability edges. Let U ∈ E be an end-component of P .

Then, we have that

◦ U ∈ W , the winning ECs (WECs), if

∃λ1 ∈ Λ1(G∆ � U), ∀λ2 ∈ Λ2(G∆ � U), ∀ s ∈ U,
∀π ∈ Outs(G∆�U)(s, λ1, λ2), MP(π) > 0 ;

(12.2)

◦ U ∈ L, the losing ECs (LECs), otherwise. By determinacy of mean-payoff

games,

∃λ2 ∈ Λ2(G∆ � U), ∀λ1 ∈ Λ1(G∆ � U), ∃ s ∈ U,
∃π ∈ Outs(G∆�U)(s, λ1, λ2), MP(π) ≤ 0.

(12.3)

Note that an EC is winning if P1 has a worst-case winning strategy from all

states. This point is important as it may well be the case that winning strategies

exist in a strict subset of states of the EC. This does not contradict the definition

of ECs as strongly connected subgraphs, as the latter only guarantees that every

state can be reached with probability one, and not necessarily surely. Hence

one cannot call upon the prefix-independence of the mean-payoff to extend the

existence of a winning strategy to all states.

Such a situation can be observed on the game of Fig. 12.2, where the EC U2

is losing (because from s1, the outcome (s1s3s4)ω can be forced by P2, yielding
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mean-payoff −1/3 ≤ 0), while its sub-EC U3 is winning. From s1, P1 can ensure

to reach U3 almost-surely, but not surely, which is critical in this case.

s1 s2

s3 s4

s5

U3

U2 U1

1
2

1
2

00

0 −1

0

10 1

0

Figure 12.2: End component U2 is losing. The set of maximal winning ECs is
Uw =W = {U1, U3}.

Maximality. As discussed in Sect. 12.1.1, we can restrict our analysis to maxi-

mal winning ECs in the following. This is a consequence of Lemma 12.8.

Lemma 12.8. Let U1, U2 ∈ W be two winning ECs in the MDP P such that

U1 ( U2. Let ν∗1 , ν
∗
2 denote the respective maximal expected values achievable

by P1 in U1 and U2. Then, we have that ν∗1 ≤ ν∗2 .

Proof. First notice that the maximal expectation achievable in an EC does not

depend on the starting state inside the EC. Hence, assume any state s2 ∈ U2.

Since U1 ( U2 and U2 is an end-component, P1 can reach a state in U1 with

probability one from s2. Since the mean-payoff value function only takes finite

values, the contribution of plays that do not reach U1 in the expected value is

null. Finally, by prefix-independence of the mean-payoff, we can forget about

the finite prefixes outside U1 and we deduce that ν∗2 ≥ ν∗1 .

We formally define the set of maximal winning ECs as

Uw = {U ∈ W | ∀U ′ ∈ W, U ⊆ U ′ ⇒ U = U ′}.

This set is not to be confused with the set of winning maximal ECs, {U ∈ W |
∀U ′ ∈ E , U ⊆ U ′ ⇒ U = U ′} ⊆ Uw, which holds no particular interest for us.

While the total number of winning ECs |W| ≤ |E| ≤ 2|S| can be exponential in

the number of states of the game, the number of maximal winning ECs |Uw| ≤ |S|
is bounded by this number of states, as all ECs of Uw are disjoint (because the

union of two winning ECs is itself a winning EC). Hence, restriction to the
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maximal winning ECs is a cornerstone in the overall NP∩ coNP complexity that

we claim for algorithm BWC MP.

Illustration. Consider the running example in Fig. 12.1. Note that states s1,

s2 and s5 do not belong to any EC: given any strategy of P1 in P , with prob-

ability one, any consistent outcome will only visit those states a finite number

of times (Lemma 12.6). The set of maximal winning ECs is Uw = {U2, U3}.
Obviously, those ECs are disjoint. The set of winning ECs is larger, W =

Uw ∪ {{s9, s10}, {s6, s7}}.
End-component U1 is losing. Indeed, in the subgame G∆ � U1, the strategy

consisting in always picking the −1 edge guarantees an outcome which mean-

payoff is negative. Note that this edge is present in E∆ as it is assigned proba-

bility 1/2 by the stochastic model. Here, we witness why it is important to base

our definition of winning ECs on the game G∆ rather than G. Indeed, in G � U2,

it is also possible for P2 to guarantee a negative mean-payoff by always choosing

edges with weight −1. However, to achieve this, P2 has to pick edges that are

not in E∆: this will never happen against the stochastic model and as such, this

can be watched by P1 to see if P2 uses an arbitrary antagonistic strategy, and

dealt with. If P2 conforms to E∆, i.e., if he plays in G∆, he has to pick the edge

of weight 1 in s7 and P1 has a worst-case winning strategy consisting in always

choosing to go in s7. This EC is thus classified as winning. Note that for U3, in

both subgames G � U3 and G∆ � U3, P1 can guarantee a strictly positive mean-

payoff by playing (s9 s10)ω: even arbitrary strategies of P2 cannot endanger P1

in this case.

Lastly, consider the game depicted in Fig. 12.2. While U2 is a strict superset

of U3, the former is losing whereas the latter is winning, as explained above.

Hence, the set Uw is equal to {U1, U3}.

Computation of the maximal winning end-components. Obviously, from

a complexity standpoint, to benefit from the polynomial size of Uw, in contrast to

the potentially exponential size ofW, we need to compute Uw without first com-

puting all winning ECs ofW. We present an algorithm to do so, called MWEC,

in Alg. 12.2. Lemma 12.9 establishes that MWEC is correct and complete, and

is in NP ∩ coNP, resorting to an NP ∩ coNP oracle to solve mean-payoff games

(i.e., decide the answer of the worst-case threshold problem), other than that

implementing polynomial operations. It operates under the assumption that all
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Algorithm 12.2 MWEC(P )

Require: P = (G, S1, S∆,∆), with G = (S,E,w) such that E∆ = E

Ensure: Mw = Uw, the set of maximal winning ECs of P

1: if P is empty then
2: return ∅
3: else
4: Compute Mw := {U1, . . . , Un} the maximal EC decomposition of P

5: for all i = 1, . . . , n do
6: Compute Li ⊆ Ui the set of states from which P2 has a strategy to enforce

MP ≤ 0 in P � Ui, i.e.,

Li := {s ∈ Ui | ∀λ1 ∈ Λ1(P � Ui), ∃π ∈ OutsP �Ui
(s, λ1), MP(π) ≤ 0}

7: if Li 6= ∅ then
8: Mw := (Mw \ {Ui}) ∪MWEC(P � (Ui \ Li))
9: return Mw

edges are of non-zero probability, i.e., E∆ = E. This is w.l.o.g. as it suffices to re-

move those edges as a preprocessing step (they have no impact in the definitions

of ECs and winning ECs).

Lemma 12.9. Let P = (G, S1, S∆,∆) be an MDP, with G = (S,E,w) its un-

derlying graph such that E∆ = E. Then algorithm MWEC computes its set of

maximal winning ECs Uw = MWEC(P ) and is in NP ∩ coNP.

Algorithm MWEC can be sketched as follows. Given a non-empty MDP, it

first computes its decomposition into maximal end-components2 (without dis-

tinction between winning and losing ECs). This can be obtained in polynomial

time [CH12]. Afterwards, it checks for each of these ECs if it is winning or not,

in the sense of Def. 12.7. If the EC is winning, it is now part of the set of claimed

maximal winning ECs, denotedMw in the algorithm, and the algorithm will not

recurse on this set of states. If the EC is losing, then it may still be the case

that a sub-EC is winning, as discussed earlier. Hence, the algorithm eliminates

all worst-case losing states and executes recursively on the induced sub-MDP. It

2Given an MDP P with a set of ECs E , an EC U is said to be maximal in P if for all
U ′ ∈ E , U ⊆ U ′ ⇒ U = U ′. This is not to be confused with the definition of maximal winning
ECs, given in this section. In particular, maximal ECs need not be winning in general, whereas
maximal winning ECs need not be maximal ECs in the sense we just defined (they only need
to be maximal with regard to other winning ECs).
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stops recursing on sub-MDPs whenever one is declared winning or empty. Since

it suppresses at least one state in each call, the algorithm is ensured to stop.

Moreover, the number of calls is polynomial in the size of the MDP. Deciding

if an EC is winning or losing requires calling an NP ∩ coNP oracle solving the

worst-case threshold problem (see Sect. 2.3.2).

The remainder of this section is dedicated to the proof of the correctness and

completeness of the algorithm, as well as an illustration of its operation. We first

state several remarks on its functioning that will be of importance in the proof.

Remark 12.10. In line 6, we have that P � Ui is a well-defined MDP, since Ui

is an EC. Similarly, in line 8, P � (Ui \ Li) is also a well-defined MDP. Indeed,

from all states s ∈ (Ui \ Li) ∩ S1, there exists an edge from s that goes to a

state of Ui \ Li, otherwise s would be a losing state (and so would be in Li).

Moreover, for all states s ∈ (Ui \Li)∩S∆, there is no edge from s that goes in Li

(otherwise s would be in Li) nor in S \Ui (otherwise U would not be an EC), and

therefore the probability distribution ∆(s) is still well-defined on P � (Ui \ Li).
Additionally, this sub-MDP still verifies that there is no edge with probability

zero. C

Remark 12.11. Let U be an EC of P , let L be its set of losing states (as computed

by line 6), and let V ⊆ U \ L. Then V is a winning EC of P � (U \ L) if and

only if V is a winning EC of P . This follows from the same reasoning as for

Rem. 12.10. C

Remark 12.12. Let U be a winning EC of P , strictly included in a losing EC V

of P . Let s ∈ V be a worst-case losing state (i.e., a state from which P1 cannot

guarantee a strictly positive mean-payoff in P � V , as defined at line 6 of the

algorithm). Then we claim that s 6∈ U . Indeed, suppose the contrary. From s,

P2 can enforce MP ≤ 0 against any strategy λ1 ∈ Λ1(P � V ), and a fortiori could

do so against any strategy λ1 ∈ Λ1(P � U) (notice that only P1 can decide to

leave U as U is an EC). Therefore, U would not be winning. C

Proof. We first show that the algorithm is sound, i.e., Mw ⊆ Uw. It is done

by induction on the size of P . If P is empty, the claim is clear. Otherwise let

U ∈Mw. There are two cases.

1. U is equal to some Ui computed at line 4 and has never been removed from

Mw. It means that Li is empty, and by definition of Li, that Ui is winning.
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Also, Ui is trivially a maximal winning EC as it belongs to the maximal

EC decomposition of P .

2. U has been added at line 8 as the result of some recursive call MWEC(P �

(Ui \ Li)) for some maximal EC Ui of P . Since Li 6= ∅, the set Ui \ Li is

strictly smaller than S, and by induction hypothesis, U is a winning EC

of P � (Ui \ Li). By Rem. 12.11, it is also a winning EC of P . It remains

to show that U is a maximal winning EC of P . Suppose that it is not the

case. Then there exists a strict superset U ′ of U which is a winning EC

of P . Clearly, U ′ ⊆ Ui since Ui is a maximal EC of P , and maximal ECs

are pairwise disjoint. Morevoer, U ′ is a subset of Ui \Li by Rem. 12.12. By

Rem. 12.11, it is therefore a winning EC of P � (Ui \Li), which contradicts

the maximality of U in P � (Ui \ Li).

We now establish that the algorithm is complete, i.e., Uw ⊆Mw. Again, it is

proved by induction on the size of P . If P is empty, then the claim is obviously

true. Now, suppose that P is non-empty, and let U ∈ Uw. There are two cases.

1. U is a maximal EC of P . In that case, it will be computed at line 4 and

never removed fromMw (because the set of losing states will be empty as

U is winning).

2. U is not a maximal EC in P . Therefore there exists some maximal EC

Ui of P , which is losing and strictly contains U . Let Li be the non-empty

set of worst-case losing states of Ui (as computed by line 6). We have

to show that U is a maximal winning EC of P � (Ui \ Li), in which case

we could conclude by induction hypothesis, i.e., U would be returned by

the recursive call MWEC(P � (Ui \ Li)). By Rem. 12.12, U and Li are

disjoint, and therefore U ⊆ (Ui \Li). By Rem. 12.10 and Rem. 12.11, U is

a winning EC of P � (Ui \Li), since it is a winning EC of P . It remains to

show that U is a maximal winning EC of P � (Ui \Li). Suppose that there

exists a strict superset U ′ of U such that U ′ is a winning EC of P � (Ui\Li).
By Rem. 12.11, U ′ would also be a winning EC of P , which contradicts

that U ∈ Uw by definition of Uw as the set of maximal winning ECs. It

implies that U is a maximal winning EC of P � (Ui \ Li) and thus that

U ∈Mw.
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Finally, consider the complexity class of this algorithm. Assume that we have

an NP ∩ coNP oracle solving the worst-case threshold problem (Sect. 2.3.2) and

called in line 6. The number of recursive calls to MWEC is linear in |S|, the num-

ber of states of P , because in the loop of line 5, the sets Ui are pairwise disjoint,

and because each call is executed after eliminating at least one state. More-

over, the maximal EC decomposition of P can be computed in O(|S|2) [CH12].

Overall, we thus obtain that MWEC belongs to NP ∩ coNP.

Consider execution of algorithm MWEC on the MDP described in Fig. 12.2.

In its first call, it computes the maximal EC decomposition Mw = {U1, U2}.
Now, for U1, we have that L1 is empty and thus U1 remains inMw. On the con-

trary, for U2, we have that L2 = {s1, s3, s4}. Hence the algorithm suppresses U2

from Mw and recurses on the sub-MDP P � (U2 \ L2) = P � {s5}. There,

the maximal EC decomposition gives the unique EC U3 which is winning since

L3 = ∅, and thus remains in Mw. The algorithm ends with Mw = {U1, U3}.
Clearly we have that Mw = Uw as proved before.

12.3.2 WECs are Almost-Surely Reached in the Long-Run

Recall that Lemma 12.6 states that under any arbitrary strategy λ1 ∈ Λ1, the

set of infinitely visited states of the outcome of the MDP P [λ1] = G[λ1, λ
stoch
2 ] is

almost-surely equal to an EC. In this section, we refine this result and show that

under any finite-memory strategy λf1 ∈ ΛF1 satisfying the BWC problem, the set

of infinitely visited states is almost-surely equal to a winning EC. In other words,

the long-run probability of negligible states, defined as Sneg = S \
⋃
U∈Uw

U =

S \
⋃
U∈W U , is zero.

Lemma 12.13. Let G = (G, S1, S2) be a two-player game, G = (S,E,w) its un-

derlying graph, λstoch2 ∈ ΛM2 a memoryless stochastic model of P2, P = G[λstoch2 ]

the resulting MDP and sinit ∈ S the initial state. Let λf1 ∈ ΛF1 be a finite-memory

strategy of P1 that satisfies the BWC problem for thresholds (0, ν) ∈ Q2. Then,

we have that

PP [λf1 ]
sinit

({
π ∈ Outs

P [λf1 ]
(sinit) | Inf(π) ∈ W

})
= 1. (12.4)

Proof. Let λf1 ∈ ΛF1 be a finite-memory strategy satisfying the BWC problem.
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By Lemma 12.6, we have that eq. (12.4) is verified for U ∈ E =W∪L. It remains

to show that the probability of having a losing EC, i.e., an EC in L, is zero.

By contradiction, assume there exists some Ul ∈ L such that

PP [λf1 ]
sinit

({
π ∈ Outs

P [λf1 ]
(sinit) | Inf(π) = Ul

})
> 0. (12.5)

Since λf1 is finite-memory, we have that M = P [λf1 ] is a finite MC. Thus, we con-

sider the bottom strongly-connected components (BSCCs) of M and eq. (12.5)

implies that some outcomes of OutsM (sinit) will be trapped in a BSCC corre-

sponding to Ul (i.e., this BSCC is reachable with non-zero probability in M),

and visit all its states infinitely often. Since Ul is losing, this BSCC induces

plays where the mean-payoff is not strictly positive. Indeed, strategy λstoch2

of P2 suffices to produce consistent outcomes that are worst-case losing thanks

to Def. 12.7 (as only the support matters for the worst-case requirement, not the

exact probabilities). By prefix-independence of the mean-payoff value function,

we obtain the existence of plays of M , starting in sinit, and inducing a mean-

payoff that does not satisfy the worst-case threshold. This shows that λf1 is not

winning for the BWC problem and by contradiction, concludes our proof.

The direct consequence of this statement is that edges involving negligible

states do not contribute to the overall expectation of finite-memory strategies

satisfying the BWC problem. Based on this observation, we propose in Sect. 12.5

a modification of the MDP P = G[λstoch2 ] that will help us synthesize satisfying

strategies when they exist.

Remark 12.14. The proof of Lemma 12.13 relies on the finite memory of the

strategy. Similar reasoning cannot be applied if the strategy of P1 uses infinite

memory. Indeed, the Markov chain M = P [λf1 ] becomes infinite and we cannot

base our analysis on BSCCs anymore (as they need not exist in general, outcomes

cannot be trapped in a BSCC). As a matter of fact, we prove in Sect. 12.7 that

infinite-memory strategies may benefit from negligible states forming losing ECs

in some cases, by staying in them forever with a non-zero probability, and thus

it is not possible to neglect them in the overall expectation. C

Illustration. Consider U1 in Fig. 12.1. By Def. 12.7, this EC is losing as

always taking the edge of weight −1 is a winning strategy for P2 in G∆ � U1.
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The optimal expectation achievable in P � U1 by P1 is 4: this is higher than

what is achievable in both U2 and U3. Note that there exists no winning EC

included in U1. By Lemma 12.6, we know that any strategy of P1 will see its

expectation bounded by the maximum between the optimal expectations of the

ECs U1, U2 and U3. Lemma 12.13 further refines this bound by restricting it to

the maximum between the expectations of U2 and U3. Indeed, it states that P1

cannot benefit from the expected value of U1 while using finite memory, as being

trapped in U1 with non-zero probability induces the existence of outcomes losing

for the worst-case (here, outcomes that always take the −1 edge). Since U1

neither helps for the worst-case nor for the expectation, there is no point in

playing inside it and P1 may as well cross it directly and try to maximize its

expectation using the winning ECs, U2 and U3. The set of negligible states in P

is Sneg = S \ (U2 ∪ U3) = {s1, s2, s3, s4, s5}.
In the game depicted in Fig. 12.2, we already observed that E = {U1, U2, U3},

W = Uw = {U1, U3} and L = {U2}. Consider the negligible state s1 ∈ Sneg =

U2\U3. As a consequence of Lemma 12.13, we have that a finite-memory strategy

of P1 may only take the edge (s1, s3) finitely often in order to ensure the worst-

case requirement. Indeed, the losing outcome (s1s3s4)ω would exist (while of

probability zero) if P1 were to play this edge infinitely often. Therefore, it is

clear that P1 can only ensure that U3 is reached with a probability arbitrarily

close to one, and not equal to one, because at some point, he has to switch to

edge (s1, s2) (after a bounded time since P1 uses a finite-memory strategy).

12.4 Inside Winning End-Components

12.4.1 WEC with Non-Zero Probabilities: Combined Strategy

In this section, we take a closer look at what happens inside a winning EC where

the stochastic model assigns non-zero probabilities to all possible edges. We will

show how to deal with edges of probability zero in Sect. 12.4.2. For the sake

of readability, we make Assumption 12.15. Obviously, similar reasoning can be

applied to all the such winning ECs in a larger game.

Assumption 12.15. Let G = (G, S1, S2) be a two-player game, G = (S,E,w)

its underlying graph, λstoch2 ∈ ΛM2 a memoryless stochastic model of P2, and
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P = G[λstoch2 ] = (G, S1, S∆ = S2,∆ = λstoch2 ) the resulting MDP. We assume

that G is reduced to a unique maximal winning EC, i.e., Uw = {S}, and that

G∆ = G, i.e., the set of edges of probability zero, E \ E∆, is empty.

Our claim is that inside such a winning EC, P1 has a finite-memory strategy

that simultaneously (a) ensures the worst-case requirement, and (b) yields an

expected value which is ε-close to the maximal expectation of the EC. Conse-

quently, we establish Theorem 12.16 and Corollary 12.17.

Theorem 12.16. Let G = (G, S1, S2) be a two-player game reduced to a unique

winning EC, G = (S,E,w) its underlying graph, λstoch2 ∈ ΛM2 a memoryless

stochastic model of P2 such that E∆ = E, P = G[λstoch2 ] = (G, S1, S∆ = S2,∆ =

λstoch2 ) the resulting MDP, sinit ∈ S an initial state and ν∗ ∈ Q the maximal

expected value achievable by P1 in P . Then, for all ε > 0, there exists a finite-

memory strategy of P1 that satisfies the BWC problem for the thresholds pair

(0, ν∗ − ε).

The remainder of this section is dedicated to the proof of Thm. 12.16. It is a

surprisingly positive result as it essentially states that P1 can guarantee both the

worst-case and the expected value thresholds without sacrifying any performance

(in terms of play values) except for some arbitrarily small ε. The key idea

is to build a finite-memory strategy based on careful alternation between two

memoryless strategies: one which is optimal for the worst-case, and one which

is optimal for the expected value. The proof requires deep understanding of the

limiting properties of Markov chains, such as the rate of convergence toward

a stationary distribution. Nevertheless, we provide an intuitive sketch of the

combined strategy and illustrate it on the running example in the following.

Corollary 12.17. In a game G reduced to a winning EC, P1 has a strategy for

the BWC problem for thresholds (0, ν) against a stochastic model λstoch2 ∈ ΛM2
such that E∆ = E if and only if the optimal expected value in G[λstoch2 ] is strictly

greater than ν.

Proof. Consider the left-to-right implication. Assume λ1 is the BWC strategy.

By definition, the optimal expected value ν∗ is at least equal to EP [λ1]
sinit (MP), which

is strictly greater than ν by hypothesis. Now consider the converse implication.

Let ν∗ be the optimal expected value. By hypothesis, ν∗ > ν. By Thm. 12.16,
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for any ε > 0, there exists a strategy λ1 ∈ ΛF1 that satisfies the BWC problem

for thresholds (0, ν∗ − ε). In particular, it is possible to choose ε ≤ ν∗ − ν to

obtain the claim and conclude the proof.

Individual requirements - memoryless strategies. First, consider the two

requirements - worst-case and expected value - independently. By definition of

winning ECs (eq. (12.2)) and the hypothesis that G = G∆, P1 has a strategy to

guarantee a strictly positive mean-payoff against any strategy of the adversary

in the game. As discussed in Sect. 2.3.2, pure memoryless optimal strategies

exist for P1. In the following, we denote λwc1 ∈ ΛPM1 such a strategy, and µ∗

the optimal mean-payoff value, i.e., the minimal mean-payoff that λwc1 ensures

against any strategy of P2. Hence, we have that

µ∗ = inf
λ′2∈Λ2

{
MP(π) | π ∈ OutsG(sinit, λ

wc
1 , λ′2)

}
= sup

λ1∈Λ1

inf
λ′2∈Λ2

{
MP(π) | π ∈ OutsG(sinit, λ1, λ

′
2)
}
> 0,

since we are in a winning EC for the worst-case threshold µ = 0.

Similarly, we define a pure memoryless strategy maximizing the expected

value in the MDP P = G[λstoch2 ] induced by applying the memoryless stochastic

model λstoch2 ∈ ΛM2 on G. We denote this strategy λe1 ∈ ΛPM1 , and we write the

associated expectation as ν∗ = EP [λe1]
sinit (MP). Notice that we manipulate equiva-

lently strategies on the game and on the MDP thanks to their shared underlying

graph (Sect. 12.2). The existence of a pure memoryless optimal strategy was

discussed in Sect. 2.3.2.

However, we here require, without loss of generality, that λe1 is chosen3 in

order to satisfy an additional property: we want that the Markov chain P [λe1] be

unichain, i.e., containing a unique recurrent class (i.e., a unique bottom strongly-

connected component when considering edges which are assigned non-zero prob-

ability in the MC), and possibly some transient states. This will be useful later

to apply needed technical results (Lemma 12.20). As evoked, it is always possible

to choose such a strategy. Intuitively, P2 cannot force the existence of multiple

recurrent classes in the MC as it would contradict the fact that we are inside an

3There may exist several pure memoryless optimal strategies, all yielding the same expected
value, by definition of optimality.
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EC (by definition, P1 must be able to force the visit of any state with probability

one). Hence, it remains to argue that P1 has no interest in inducing multiple

recurrent classes, as he cannot increase the expected value by doing so. This

is clear since either the different recurrent classes yield the same expectation,

in which case one suffices, or they yield different expectations, in which case

an optimal strategy like λe1 will only use the one that produces the maximal

expectation (P1 has the power to restrict the MC to the class of his choice by

definition of EC).

In general, one cannot hope to satisfy the BWC problem by following only

strategy λwc1 or only strategy λe1, although they suffice when their respective

requirements are considered independently. Fortunately, it is possible to build

upon those two strategies in order to achieve simultaneous satisfaction with a

combined finite-memory strategy.

Defining a combined strategy. Based on the existence of strategies λwc1

and λe1, we define a pure finite-memory strategy λcmb
1 ∈ ΛPF1 that carefully

and dynamically alternates between the two memoryless strategies to ensure

satisfaction of the BWC problem. Our strategy is parameterized by two naturals

denoted by K and L.

Definition 12.18. In a game G satisfying Assumption 12.15, we define the

combined strategy λcmb
1 ∈ ΛPF1 as follows.

(a) Play λe1 for K steps4 and memorize Sum ∈ Z, the sum of weights encoun-

tered during these K steps.

(b) If Sum > 0, then go to (a).

Else, play λwc1 during L steps then go to (a).

We define periods as sequences played from the beginning of a phase of

type (a) or (b) up to its end, i.e., the beginning of a new period. Intuitively, in

a period of type (a), the strategy mimics the optimal expectation strategy. By

playing λe1 long enough, we can ensure that the mean-payoff obtained during the

period is very close to ν∗, with probability close to one (Lemma 12.20). Still,

we need to ensure the worst-case threshold in all cases. This may in general not

4By step we mean taking any edge in the game, be it from a state of P1 or P2.
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be ensured by periods of type (a). Hence, we keep a memory of the running

sum of weights in the period. This requires a finite number of bits of memory

as the sum takes values in {−K · W,−K · W + 1, . . . ,K · W − 1,K · W}. If

Sum > 0 after the K steps, then the mean-payoff over the period satisfies the

worst-case requirement (eq. (11.1)) and the strategy can immediately start a

new period of type (a). Otherwise, it is necessary to compensate in order to sat-

isfy the worst-case requirement. In that case, the strategy mimics the optimal

worst-case strategy λwc1 for L steps. Such a strategy guarantees that cycles in

the outcome have a strictly positive sum of weights since µ∗ > 0, as discussed

before. As Sum is lower bounded after K steps, there exists a value of L such

that the total sum of weights (and thus the mean-payoff) over periods (a) + (b)

is strictly positive. Using the fact that all weights are integers, we further deduce

that the sum over a period is at least equal to one. By the boundedness of the

length of a period, we thus prove that the overall mean-payoff along a play stays

strictly positive. Hence λcmb
1 satisfies eq. (11.1).

While this sketch is sufficient to see that the worst-case requirement is satis-

fied by strategy λcmb
1 , proving that we can choose K and L such that its expected

value is ε-close to ν∗ is more involved. Intuitively, periods of type (b) must not

happen too frequently, nor be too long, in order to have a boundable impact on

the overall expectation. The cornerstone to achieve such a moderate impact of

periods of type (b) resides in the fact that a linear increase in K produces an

exponential decrease in the need for a period of type (b) (Lemma 12.20) whereas

it only requires a linear increase in L to ensure the worst-case requirement (see

Def. 12.21 and Lemma 12.23). Note that the need for a decreasing contribution

of periods of type (b) to the overall expectation explains why we need to track

the current sum Sum and cannot settle for a simpler strategy that would play

periods (a) and (b) in strict alternation (cf. Rem. 12.22).

In a nutshell, we claim that under Assumption 12.15, it is always possi-

ble to find values for constants K and L such that strategy λcmb
1 satisfies the

BWC problem for (0, ν∗ − ε), as stated in Theorem 12.16. Before proving it,

we illustrate the combined strategy and introduce some intermediary technical

results. Notice that implementing λcmb
1 only requires finite memory as strate-

gies λe1 and λwc1 are memoryless, constants K and L have finite values, and Sum

takes a finite number of values.
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Illustration. Consider the subgame G∆ � U3 = G � U3 of the game in Fig. 12.1

and the initial state sinit = s10. Clearly, the worst-case requirement can be

satisfied, that is why the EC is classified as winning. Indeed, always choos-

ing to go to s9 when in s10 is an optimal memoryless worst-case strategy λwc1

that guarantees a mean-payoff µ∗ = 1. The expectation of this strategy is

EG[λwc
1 ,λstoch2 ]

sinit (MP) = 1. On the other hand, the strategy λe1 that always selects the

edge going to s11 is optimal regarding the expected value criterion: it induces

an expectation5 ν∗ =
(

0 +
(
1/2 · 9 + 1/2 · (−1)

))
/2 = 2 against the stochastic

model λstoch2 . However, it can only guarantee a mean-payoff of value −1/2 in the

worst-case.

s10

Sum > 0
s11

s10

Sum ≤ 0
s9

1
2

1
2

0

−1

1

1

9

Figure 12.3: Markov chain G[λcmb
1 , λstoch2 ] induced by the combined strategy λcmb

1

and the stochastic model λstoch2 over the winning EC U3 of G.

By Theorem 12.16, we know that it is possible to find finite-memory strategies

satisfying the BWC problem for any thresholds pair (0, 2− ε), ε > 0. In partic-

ular, consider the thresholds pair (0, 3/2). We build a combined strategy λcmb
1

as described in Def. 12.18. Let K = L = 2: the strategy plays the edge (s10, s11)

once, then if the edge of value 9 has been chosen by P2, it chooses (s10, s11) again;

5Given an irreducible MC M = (G, δ), with G = (S,E,w), one can compute its limiting

stationary distribution by finding the unique probability vector v ∈ [0, 1]|S| such that vPδ = v,
where Pδ denotes the transition matrix derived from δ. The expected mean-payoff value can
then be obtained by multiplying the row vector v by the column vector e ∈ R|S| that contains
the respective expected weights over outgoing edges for each state. That is: ∀ s ∈ S, e(s) =∑
s′∈S δ(s)(s

′) · w((s, s′)), and EMs = v · e.
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otherwise it chooses the edge (s10, s9) once and then resumes choosing (s10, s11).

This strategy satisfies the BWC problem. In the worst-case, P2 always chooses

the −1 edge, but each time he does so, the −1 is followed by two +1 thanks

to the cycle s10s9s10. Strategy λcmb
1 hence guarantees a mean-payoff equal to

(0 − 1 + 1 + 1)/4 = 1/4 > 0 in the worst-case. For the expected value require-

ment, we can build the Markov chain G[λcmb
1 , λstoch2 ] (Fig. 12.3) and check that

its expectation is EG[λcmb
1 ,λstoch2 ]

sinit (MP) = 5/3 > 3/2.

Remark 12.19. Memoryless strategies do not suffice for the BWC problem, even

with randomization. Indeed, the edge (s10, s11) cannot be assigned a non-zero

probability as it would endanger the worst-case requirement (since the out-

come (s10s11)ω cycling on the edge of weight −1 would exist and have a negative

mean-payoff). Hence, the only acceptable memoryless strategy is λwc1 , which has

only an expectation of 1. C

Technical results. Before proving the correctness of strategy λcmb
1 , we need

to introduce an important property verified by the Markov chain G[λe1, λ
stoch
2 ].

It is well-known that in the long-run, the probability of outcomes that induce a

mean-payoff equal to the expectation of the MC is one. Lemma 12.20 shows that,

for sufficiently long prefixes, it is possible to bound the probability of having a

mean-payoff which differs from the expected value by more than a given ε > 0.

In particular, it implies that for sufficiently large values of K, this probability

decreases exponentially with K. This will help us bound the impact of periods

of type (b) on the overall expectation.

Lemma 12.20 (Follows from the extension of [GO02, Thm. 2] proposed

in [Tra09]). For all initial state sinit, for all ε > 0, for some constants c1, c2 > 0,

there exists K0 ∈ N such that, for all K ≥ K0,

PG[λe1,λ
stoch
2 ]

sinit

(
π ∈ Plays(G[λe1, λ

stoch
2 ])

∣∣∣ ∣∣MP(π(K))− ν∗
∣∣ ≥ ε) ≤ F(K, ε)

with F(K, ε) =
c1

ec2·K·ε2
.

In [GO02, Thm. 2], Glynn and Ormoneit present an extension of Hoeffding’s

inequality [Hoe63] for uniformly ergodic Markov chains. Straight application of

this result in our setting is not possible, as the MC G[λe1, λ
stoch
2 ] does not need

to be aperiodic in general. Nevertheless, this result is extended to unichain MCs
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(possibly periodic) in [Tra09]. Hence, Lemma 12.20 reformulates the latter result

in our precise context. Notice that the MC G[λe1, λ
stoch
2 ] is unichain thanks to

the choice of λe1, as presented earlier.

Proof. For the sake of completeness, we sketch the main steps proposed by Tra-

col [Tra09] to extend the results of [GO02]. Consider the MC G[λe1, λ
stoch
2 ]: it

can be decomposed in a set of transient states and a unique recurrent class, i.e.,

a bottom strongly-connected component. Assume this BSCC is periodic, of pe-

riod d ∈ N0. We can decompose it in d aperiodic classes on which we are able to

apply the bound provided by [GO02, Thm. 2]. The key idea is then to obtain a

unified bound by aggregating the bounds obtained for each aperiodic MC, given

sufficiently large values of the constants.

A word on the constants of Lemma 12.20. Careful analysis of the proofs

of [GO02, Thm. 2] and [Tra09, Prop. 2] reveals that c1 is exponential in ε

and polynomial in the characteristics of the MC, while c2 is only polynomial in

the characteristics of the MC. More importantly, constant K0 is polynomial in

the size of the MC and polynomial in the largest weight W (exponential in its

encoding).

Analysis of the combined strategy. Our goal is to show that for any ε > 0,

there exist two naturals K and L such that λcmb
1 proves the correctness of The-

orem 12.16. First, we define L as a linear function of K. Note that the main

purpose of K is to create periods of type (a) long enough to have an expected

mean-payoff close to the optimal value achieved by λe1, i.e., ν∗. The aim of L is

for periods of type (b) to be long enough to compensate the possible negative

effect of periods of type (a) and thus ensure the worst-case requirement. As

stated before, L should not grow too quickly to preserve an overall mean-payoff

which is mainly influenced by periods of type (a) (hence close to the optimal

expectation ν∗).

Definition 12.21. Given a natural constant K ∈ N, we define

L =

⌊
K ·W + |S| ·W + |S| · µ∗

µ∗

⌋
+ 1.
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Remark 12.22. Obviously, L needs to be proportional to K to preserve the worst-

case requirement as the amount to compensate is bounded by K ·W . Conse-

quently, we can observe the need for the bookkeeping of Sum in strategy λcmb
1

in contrast to a non-dynamic alternation scheme between periods of type (a)

and (b). Indeed, in a strategy following the latter scheme, the long-term ex-

pectation would be close to K·ν∗+L·µ∗
K+L . As L is not constant but proportional

to K, one can easily see that this expression does not tend to ν∗ when K tends

to infinity (which is required when ε tends to zero according to Lemma 12.20).

Thus, strict alternation does not suffice to satisfy the thresholds pair presented

in Thm. 12.16. C

Under the value of L given in Def. 12.21, Lemma 12.23 states that the worst-

case requirement is satisfied. The idea is to decompose any play into an infinite

sequence of periods, each of them having a bounded length and ensuring a strictly

positive sum of weights, thus yielding an overall strictly positive mean-payoff of

the play.

Lemma 12.23. For any K ∈ N, the combined strategy λcmb
1 ∈ ΛPF1 is such that

∀λ2 ∈ Λ2, ∀π ∈ OutsG(sinit, λ
cmb
1 , λ2), MP(π) > 0.

Proof. Let λ2 be an arbitrary strategy of P2 and π any outcome taken in the set

OutsG(sinit, λ
cmb
1 , λ2). By definition of λcmb

1 , we decompose the play in a sequence

of periods of type (a) and (b). That is, π = ρ0ρ1ρ2 . . . where, for all i ≥ 0, ρi

is a finite sequence of states that is either of length K if ρi is of type (a) or of

length L if ρi is of type (b). Moreover, ρ0 is of type (a) and for all i ≥ 1, ρi is

of type (b) if and only if ρi−1 is of type (a) and such that Sum(ρi−1) ≤ 0 (i.e.,

the sum of weights along the sequence is not strictly positive). We regroup each

sequence of type (b) with its predecessor of type (a) and obtain π = ρ′0ρ
′
1ρ
′
2 . . .

such that all sequences are either of type (a) or of type (a) + (b).

Consider any sequence ρ′i of type (a). Since it is not followed by a period

of type (b), we know that Sum(ρ′i) > 0. Now consider any sequence ρ′i of type

(a) + (b). At the end of the period of type (a), the sum is bounded from below

by −K ·W . During the period of type (b), an optimal memoryless worst-case

strategy λwc1 is followed and consequently, all formed cycles have a mean-payoff

at least equal to µ∗. Hence, the sum of weights over the period of type (b) is at
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least (L − |S|) · µ∗ − |S| ·W . By Def. 12.21, this induces that the overall sum

over the sequence of type (a) + (b) is Sum(ρ′i) > 0.

In both cases, we thus have that Sum(ρ′i) > 0. But since weights are integers,

this implies a stronger inequality: Sum(ρ′i) ≥ 1. We go back to the play seen as an

infinite sequence of states π = s0s1s2 . . . . Thanks to the previous observations,

we can now state that the total sum of weights up to any state st, t ≥ 0, is

bounded by

TP(π(t)) ≥ −
[
t mod (K +L)

]
·W +

⌊
t

K + L

⌋
· 1 ≥ −(K +L) ·W +

t

K + L
− 1.

Hence the mean-payoff of the play π is

MP(π) ≥ lim inf
t→∞

[
−(K + L) ·W

t
+

1

K + L
− 1

t

]
=

1

K + L
> 0,

which concludes the proof.

It remains to show that for any ε > 0, there exists a value K ∈ N such that the

expected value requirement (eq. (11.2)) is also satisfied by λcmb
1 . This is proved in

Lemma 12.24. Again, decomposition of plays into periods needs to be considered.

Furthermore, the crux of the proof resides in the use of Lemma 12.20: it induces

that when the length of periods of type (a) grows linearly, the probability of

periods of type (b) decreases exponentially. Since the length of periods of type (b)

only grows linearly in K, the overall impact of periods (b) in the expectation

tends to zero when K tends to infinity. Hence, the expectation of λcmb
1 tends

to the optimal expectation ν∗ and classical convergence analysis provides the

result.

Lemma 12.24. For any ε > 0, there exists K ∈ N such that

EG[λcmb
1 ,λstoch2 ]

sinit (MP) > ν∗ − ε.

Proof. For the proof, we assume that ε ≤ ν∗, otherwise the claim is obviously

true for any K ∈ N since the mean-payoff of any outcome consistent with λcmb
1 is

strictly positive by application of Lemma 12.23. Now, for a givenK ∈ N, consider

the corresponding finite MC M(K) = G[λcmb
1 , λstoch2 ] where λcmb

1 is defined with

the parameter K (i.e. periods of type (a) are of length K). To obtain the claim,
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we prove that EM(K)
sinit (MP) −−−−→

K→∞
ν∗. Similarly to the proof of Lemma 12.23,

any outcome of M(K) is an outcome consistent with λcmb
1 in G and thus can be

decomposed in an infinite sequence of periods of types (a) and (a) + (b).

To begin with, we will consider (i) the expectation over one period of type (a),

and (ii) the expectation over one period of type (a)+(b), as well as the respective

probabilities of seeing such periods whenever a new period begins. Note that we

can do that because periods of type (a) and (a) + (b) are independent events by

definition of λcmb
1 . Hence, the probability that some period has a specific type,

and the expected value of that period, are not influenced by what happened over

previous periods.6

(i) Let us first consider periods of type (a). By Def. 12.18, P1 follows the

strategy λe1 during those periods. Recall that EG[λe1,λ
stoch
2 ]

sinit (MP) = ν∗. Let us de-

note by e(a) the expected mean-payoff over a period of type (a). By Lemma 12.20,

for any ε > 0, there exists K0 ∈ N such that for all K ≥ K0, this expected value

is bounded from below by

e(a) ≥ (1−F(K, ε)) · (ν∗ − ε) + F(K, ε) · x,

with x a lower bound on any consistent outcome. Since any period of type (a)

is not followed by a period of type (b) (otherwise it would be considered as a

period of type (a) + (b)), we know that the sum of weights along the K steps of

the period is greater than or equal to 1, and therefore we can take x ≥ 1/K (cf.

proof of Lemma 12.23).

(ii) Now, consider periods of type (a) + (b). As shown in the proof of

Lemma 12.23, the expected mean-payoff over such a period, denoted by e(a)+(b),

is greater than or equal to 1/(K+L). Now consider the probability p(a)+(b) that

a period is of type (a) + (b). By definition of strategy λcmb
1 , p(a)+(b) is equal to

the probability of having a total sum of weights less than or equal to 0 after K

steps of playing λe1. Since we assume that ε ≤ ν∗ and since ν∗ ≥ µ∗ > 0, we can

bound from above this probability by the probability to have a mean-payoff less

than ν∗− ε over the K steps. Repeating the argument of point (i) and applying

Lemma 12.20, we deduce that p(a)+(b) ≤ F(K, ε) for all K ≥ K0.

6For the sake of simplicity, we omit that different periods do not necessarily start in the
same state, as the resulting impact on the expectation is negligible for sufficiently long periods.
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We now have sufficient arguments to study the overall expected value over

m periods. Let p(a) denote the probability of periods of type (a). Note that

p(a) = 1 − p(a)+(b). The expected number of periods of type (a) is m · p(a).
Similarly, m · p(a)+(b) is the expected number of periods of type (a) + (b). The

expected sum of weights over the m periods is therefore m · p(a) · e(a) · K +

m · p(a)+(b) · e(a)+(b) · (K + L) since periods of type (a) have length K and

periods of type (a) + (b) length K +L. The expected length of the m periods is

m · p(a) ·K +m · p(a)+(b) · (K + L). Finally, we have that

EM(K)
sinit,m periods(MP) =

m · p(a) · e(a) ·K +m · p(a)+(b) · e(a)+(b) · (K + L)

m · p(a) ·K +m · p(a)+(b) · (K + L)
. (12.6)

Clearly, this expression does not depend on the number of periods m. This is

consistent with our analysis since we have established that periods are statisti-

cally independent. Also, note that this reasoning is only correct for complete

periods. Nonetheless, any prefix π(n), n ≥ 0, of the play is composed of a se-

quence of complete periods followed by a suffix of length bounded by (K + L)

and of total sum of weights bounded by −(K +L) ·W and (K +L) ·W . Hence,

we frame the expected mean-payoff over the n first steps of a play by the two

following inequalities, where l = p(a) ·K+p(a)+(b) · (K+L) denotes the expected

length of a period:⌊n
l

⌋
· l · EM(K)

sinit, 1 period(MP)− (K + L) ·W

n
≤ EM(K)

sinit, n steps(MP),

and

EM(K)
sinit, n steps(MP) ≤

⌊n
l

⌋
· l · EM(K)

sinit, 1 period(MP) + (K + L) ·W

n
.

Naturally, the finite suffix proves to be negligible when n grows, hence

EM(K)
sinit

(MP) = lim inf
n→∞

[
EM(K)
sinit, n steps(MP)

]
= EM(K)

sinit, 1 period(MP). (12.7)

Observe that eq. (12.7) uses the equality between the expectation over the values

of plays and the limit of the expectation over values of prefixes. This equality

is verified for the mean-payoff value function but does not need to be true for

arbitrary value functions.
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Back to eq. (12.6), with m = 1, we use e(a)+(b) ≥ 1/(K +L) > 0 and assume

K > 0 to obtain

EM(K)
sinit

(MP) ≥
p(a) · e(a)

p(a) + p(a)+(b) ·
(
K+L
K

) .
Again, we assume K large enough to ensure p(a) > 0 (such a K exists by conse-

quence of Lemma 12.20) and get

EM(K)
sinit

(MP) ≥
e(a)

1 +
(
p(a)+(b)

p(a)

)
·
(
K+L
K

) .
By (i) and (ii), we have that p(a) ≥ 1 − F(K, ε), p(a)+(b) ≤ F(K, ε), and that

e(a) ≥ (1−F(K, ε)) · (ν∗ − ε). We derive that

EM(K)
sinit

(MP) ≥ (1−F(K, ε)) · (ν∗ − ε)
1 + F(K,ε)·(K+L)

(1−F(K,ε))·K

. (12.8)

Recall that ultimately, we want to prove that EM(K)
sinit (MP) −−−−→

K→∞
ν∗. Consider

what happens when K → ∞ in eq. (12.8): notice that L is linear in K by

Def. 12.21, hence L → ∞, and that F(K, ε) → 0 by Lemma 12.20. This does

not suffice to conclude on the possible convergence of the lower bound given in

eq. (12.8). The crux of the argument is given by Lemma 12.20: F(K, ε) decreases

exponentially for a linear increase inK. Thus, we have that F(K, ε)·(K+L)→ 0.

Therefore,

lim
K→∞

(1−F(K, ε)) · (ν∗ − ε)
1 + F(K,ε)·(K+L)

(1−F(K,ε))·K

 = ν∗ − ε. (12.9)

Notice two facts. First, for any K ∈ N, we have that

EM(K)
sinit

(MP) ≤ EG[λe1,λ
stoch
2 ]

sinit (MP) = ν∗

by the optimality of λe1. Second, eq. (12.9) is valid for any ε such that ν∗ ≥ ε > 0.

Hence we observe that the sequence of expected values (EM(K)
sinit (MP))K≥0 is
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bounded from above and from below by two sequences converging to ν∗. Ergo

EM(K)
sinit

(MP) −−−−→
K→∞

ν∗.

By definition of convergence, for any ε such that ν∗ ≥ ε > 0, there exists K ∈ N
such that EM(K)

sinit (MP) > ν∗ − ε, which concludes our proof.

Based on Lemma 12.23 and Lemma 12.24, Theorem 12.16 follows straightfor-

wardly and concludes our analysis of winning ECs with no edges of probability

zero. We will present how we can extend these results to arbitrary winning ECs

in the next section.

12.4.2 Starting in a WEC: Witness-and-Secure Strategy

We now turn to winning ECs with potential existence of edges of probability

zero, i.e., E∆ ⊆ E. We present in this section how to construct a finite-memory

strategy that can benefit ε-closely from the maximal expectation achievable in

such winning ECs when facing the stochastic model λstoch2 , while guaranteeing

satisfaction of the worst-case requirement even against arbitrary strategies of P2

(i.e., strategies that may use edges in E \ E∆). It is crucial to notice that we

now consider a complete game, i.e., not necessarily reduced to a single winning

EC as in Sect. 12.4.1. Still, we assume that the play starts in a winning EC:

consistent outcomes will stay in it when P2 follows λstoch2 (because P1 will have

no interest to leave), but may exit the EC if P2 takes edges of probability zero,

either by the action of P2 (recall there may exist edges that leave the EC in

E \ E∆) or the action of P1 (which may need to leave to guarantee a strictly

positive mean-payoff).

Theorem 12.25. Let G = (G, S1, S2) be a two-player game, G = (S,E,w)

its underlying graph, λstoch2 ∈ ΛM2 a memoryless stochastic model of P2, P =

G[λstoch2 ] = (G, S1, S∆ = S2,∆ = λstoch2 ) the resulting MDP, U ∈ W a winning

EC, sinit ∈ U an initial state inside the EC, and ν∗ ∈ Q the maximal expected

value achievable by P1 in P � U . Then, for all ε > 0, there exists a finite-memory

strategy of P1 that satisfies the BWC problem for the thresholds pair (0, ν∗− ε).

We prove this theorem in the following. Let us first give some key intuition.

With respect to the expected value requirement of eq. (11.2), the hypothesis is
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that P2 will follow its stochastic model λstoch2 . Hence, he will only play edges

in E∆ and the combined strategy proposed in Sect. 12.4.1 suffices to achieve

the claimed expectation and guarantee the worst-case threshold against λstoch2

(basically, we can apply Thm. 12.16 on G∆). Now, we still have to account

for arbitrary strategies of P2 to satisfy the worst-case requirement of eq. (11.1).

Notice that the combined strategy suffices to ensure it against all strategies

playing exclusively in E∆. So, it only remains to deal with strategies that chooses

some edges in E \E∆. It is easy for P1 to witness if P2 chooses an edge outside

E∆ (as the stochastic model is assumed known by P1). If this happens, P1 can

secure its mean-payoff value by switching from the combined strategy to a worst-

case winning strategy, which exists in all states due to the preprocessing of the

game (Sect. 12.2).

Basis strategies. We denote by λsec1 ∈ ΛPM1 (G) a pure memoryless worst-case

winning strategy on G. This strategy exists in all states of the game due to the

preprocessing, including states of the EC U ∈ W. Still, it may require leaving the

EC to ensure a strictly positive mean-payoff (because the definition of winning

ECs only consider edges in E∆).

When using λstoch2 , P2 cannot force leaving the winning EC U ∈ W. By

Thm. 12.16, P1 has a finite-memory strategy on G∆ � U , denoted λcmb
1 , that

ensures eq. (11.2), and verifies eq. (11.1), if we restrict P2 to strategies in Λ2(G∆).

Defining a witness-and-secure strategy. In order to prove Thm. 12.25, we

define a pure finite-memory witness-and-secure strategy as follows.

Definition 12.26. In a game G such that P = G[λstoch2 ], U ∈ W is a winning

EC and sinit ∈ U is the initial state, we define the witness-and-secure strategy

λwns1 ∈ ΛPF1 (G) as follows.

(i) Play the combined strategy λcmb
1 ∈ ΛPF1 (G∆ � U) as long as P2 picks edges

in E∆.

(ii) As soon as P2 takes an edge in E \ E∆,7 play the worst-case winning

strategy λsec1 ∈ ΛPM1 (G) forever.

7More complex switching schemes could be used, such as only switching if the edge taken is
really dangerous (i.e., part of a non strictly positive cycle), switching after a bounded number
of deviations from the support, etc. But this simple scheme proves to be sufficient to realize
Thm. 12.25 and is easier to analyze.
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This strategy uses the combined strategy λcmb
1 presented in Def. 12.18. Hence

it is similarly parameterized by two naturals K and L that respectively define

the lengths of periods of type (a) and of type (b) in Def. 12.18. Again, we will

show that for any ε > 0, we can find values for K and L such that Thm. 12.25

is verified. Notice that λwns1 is finite-memory since λcmb
1 and λsec1 are too and

watching for the appearance of an edge belonging to E \E∆ in the actions of the

adversary only requires a finite amount of memory.

Intuitively, the witness-and-secure strategy acts as follows. As long as P2

conforms to E∆, playing inG is essentially the same as playing inG∆. Hence λwns1

prescribes acting like λcmb
1 , which induces satisfaction of the BWC problem in

the subgame G∆ � U by Thm. 12.16. Two requirements must be satisfied by

strategy λwns1 : (a) the worst-case and (b) the expected value. First consider (a).

Two situations may occur. Either the outcome is such that λwns1 always stays

in phase (i) and strategy λcmb
1 is used forever in G∆ � U , in which case direct

application of Thm. 12.16 suffices to prove that eq. (11.1) is satisfied. Or, the

outcome is such that λwns1 switches to phase (ii), in which case satisfaction of the

worst-case requirement follows by definition of λsec1 . Now consider (b). Notice

that the only consistent outcomes always stay in phase (i), by definition of the set

OutsG(sinit, λ
wns
1 , λstoch2 ) which does not allow for choices outside of E∆. Hence

the overall expectation is equal to the one over outcomes staying in phase (i).

By Def. 12.26, the latter is exactly the expectation of λcmb
1 , which satisfies the

threshold by Thm. 12.16. Thus, the existence of fitting values of K and L for

Thm. 12.25 is granted.

Illustration. Consider the winning EC U2 in the game depicted in Fig. 12.1

and the initial state s6 ∈ U2. Notice that P1 can ensure a strictly positive

mean-payoff in the subgame G∆ � U2, but not in G � U2. Indeed, it is easy

to see that by always choosing the −1 edges (which requires edge (s7, s6) ∈
E∆ \ E), P2 can ensure a negative mean-payoff whatever the strategy of P1.

However, there exists a strategy that ensures eq. (11.1), i.e., yields a strictly

positive mean-payoff against any strategy in Λ2(G), by leaving the EC. Let λsec1

be the memoryless strategy that takes the edge (s6, s9) and then cycle on (s10s9)ω

forever: it guarantees a mean-payoff of 1 > 0.

For a moment, consider the EC U2 in G∆. Graphically, it means that the −1

edge from s7 to s6 disappears. In the subgame G∆ � U2, there are two particular
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memoryless strategies. The optimal worst-case strategy λwc1 guarantees a mean-

payoff of 1/2 > 0 by choosing to go to s7. The optimal expectation strategy λe1
yields an expected mean-payoff of 3 by choosing to go to s8 (notice this strategy

yields the same expectation in P∆ � U2 and P � U2). Based on them, we build

the combined strategy λcmb
1 ∈ ΛPF1 (G∆ � U2) as defined in Def. 12.18 and by

Thm. 12.16, for any ε > 0, there are values of K and L such that it satisfies the

BWC problem for thresholds (0, 3−ε) in G∆ � U2. For example, for K = L = 2,

we have E(P∆�U2)[λcmb
1 ]

s6 (MP) = E(P �U2)[λcmb
1 ]

s6 (MP) = 13/6.

We construct the witness-and-secure strategy λwns1 ∈ ΛPF1 (G) based on λcmb
1

and λsec1 as described by Def. 12.26. In this case, that means playing as λcmb
1

until the −1 edge from s7 to s6 is taken by P2. As previously sketched, such

a strategy ensures a worst-case mean-payoff equal to 1 > 0 thanks to λsec1 and

yields an expectation EP [λwns
1 ]

s6 (MP) = 13/6 for K = L = 2.

Finally, notice that securing the mean-payoff by switching to phase (ii) of

strategy λwns1 is needed to satisfy the worst-case requirement if P2 plays in E\E∆.

Also, observe that it is still necessary to alternate according to λcmb
1 in G∆ � U2

and that playing λe1 is not sufficient to ensure the worst-case (because P1 has to

deal with the −1 edge from s8 to s6 that remains in E∆).

Analysis of the witness-and-secure strategy. We close our discussion of

winning ECs with the formal proof of Thm. 12.25 through the use of the witness-

and-secure strategy λwns1 (Def. 12.26).

Proof of Theorem 12.25. Assume an arbitrary ε > 0. Let K,L ∈ N be such that

the combined strategy λcmb
1 ∈ ΛPF1 (G∆ � U), as defined in Def. 12.18, satisfies the

BWC problem for thresholds (0, ν∗− ε) in G∆ � U . The existence of such values

is granted by Thm. 12.16. We build the finite-memory strategy λwns1 ∈ ΛPF1 (G)

according to Def. 12.26 and claim it satisfies the BWC problem for the pair of

thresholds (0, ν∗ − ε) in G.

First, consider the worst-case requirement. Let λ2 ∈ Λ2(G) be any strategy

of P2 and π ∈ OutsG(sinit, λ
wns
1 , λ2) be any outcome consistent with λwns1 . Two

cases are possible. One, P2 keeps choosing edges in E∆ forever. That is, for

π = s0s1s2 . . . , for all i ≥ 0 such that si ∈ S∆ = S2, we have that (si, si+1) ∈ E∆.

Then, the play is constrained to G∆ � U and consistent with λcmb
1 . Hence, it

follows from Thm. 12.16 (and Lemma 12.23) that MP(π) > 0. Two, P2 chooses
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some edges in E \ E∆. That is, for π = s0s1s2 . . . , there exists i ≥ 0 such that

(si, si+1) 6∈ E∆. Let i0 be the smallest index where it happens. By definition

of λwns1 , we know that P2 switches to λsec1 at step i0. Hence the suffix π′ =

si0si0+1si0+2 . . . is consistent with λsec1 . Consequently, MP(π′) > 0. By prefix-

independence of the mean-payoff value function, we conclude that MP(π) > 0,

which closes the case of the worst-case requirement.

Second, consider the expected value requirement. We claim that inequality

EG[λwns
1 ,λstoch2 ]

sinit (MP) > ν∗ − ε is verified. By definition, OutsG(sinit, λ
wns
1 , λstoch2 ) =

OutsP (sinit, λ
wns
1 ) only contains plays where P2 conforms to E∆ at all times. Such

plays never exit the EC and by Def. 12.26, we have OutsG(sinit, λ
wns
1 , λstoch2 ) =

OutsG∆
(sinit, λ

cmb
1 , λstoch2 ). Also note that the probability measure of plays of

those two sets is identical. Hence, we obtain

EG[λwns
1 ,λstoch2 ]

sinit (MP) = EG∆[λcmb
1 ,λstoch2 ]

sinit (MP) > ν∗ − ε

by Thm. 12.16 (and Lemma 12.24). This sets the case for the expectation and

concludes our proof.

12.5 Global Strategy: Favor Reaching the Highest

Valued WECs

We now have all the elements needed to describe the final steps of algorithm

BWC MP (lines 12-17) and prove its correctness. In this section, we first de-

scribe (Def. 12.27) how to modify the weights of the MDP P = G[λstoch2 ] such

that a classical optimal expectation strategy in the modified MDP P ′ will nat-

urally tries to reach winning ECs with the highest combined expectation. This

step is a cornerstone of the global strategy λglb1 ∈ ΛPF1 (G) that we define next

(Def. 12.29). This strategy is a by-product of algorithm BWC MP.

We study the adequacy of algorithm BWC MP through two lemmas. In

Lemma 12.30, we prove its correctness, i.e., that if it returns Yes, then the

global strategy λglb1 satisfies the BWC problem for the given thresholds. In

Lemma 12.31, we show its completeness, i.e., that if it returns No, then there

exists no finite-memory strategy that satisfies the BWC problem. Combining

those two lemmas and the analysis of the preprocessing conducted in Sect. 12.2,
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we conclude that algorithm BWC MP is a valid algorithm to solve the BWC

problem on any two-player game with the mean-payoff value function.

Modifying the MDP to naturally reach winning ECs. Our motivation

is the creation of an MDP P ′ such that an optimal strategy in P ′ maximizes

the expectation without using negligible states (as defined in Sect. 12.3.1, that

is, with regard to G and P ). Indeed, we know by Lemma 12.13 that winning

ECs should be almost-surely eventually used in order to satisfy the worst-case

requirement of the BWC problem. In particular, states in losing ECs and not in

any winning sub-EC should be avoided in the long-run.

Definition 12.27. Given G = (G, S1, S2), G = (S,E,w) and P = G[λstoch2 ], we

define G′ = (G′, S1, S2), G′ = (S,E,w′) and P ′ = G′[λstoch2 ] by modifying the

weight function as follows:

∀ e = (s1, s2) ∈ E, w′(e) :=

w(e) if ∃ U ∈ Uw s.t. {s1, s2} ⊆ U,

0 otherwise.

Let λe1 ∈ ΛPM1 (P ′) be a pure memoryless strategy of P1 that maximizes

the expected mean-payoff in P ′. Such a strategy always exists (Sect. 2.3.2).

Note that following λe1 does not suffice to satisfy the BWC problem in general

(Rem. 12.19). This strategy will be part of the global strategy λglb1 (Def. 12.29):

its role is to maximize the combined expectation of reachable winning ECs, while

avoiding using negligible states, in particular states that only belong to losing

ECs. The strategy to adopt inside winning ECs will be prescribed by another

part of the global strategy, based on what we have established in Sect. 12.4.2.

Observe that it suffices to consider the maximal winning ECs in order to maxi-

mize the expectation, as proved by Lemma 12.8.

Remark 12.28. Notice that λe1 is also well-defined in P andG thanks to the shared

underlying graph. Also, recall that all states of G are worst-case winning due to

the preprocessing. Let λwc1 ∈ ΛPM1 (G) be an optimal worst-case winning strategy.

We observe that all states remain worst-case winning in G′ for the reason that an

optimal worst-case strategy only needs to visit edges involving negligible states

finitely often. Indeed, either these negligible states do not belong to any EC, in

which case P1 cannot rely on them to satisfy the worst-case requirement (as he

cannot ensure that he will be able to see them infinitely often), or they belong
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to losing ECs and no winning sub-EC, in which case P1 only needs to visit them

a finite number of times (basically to get out of the set (
⋃
U∈E U) \ (

⋃
U∈W U) if

the play starts in it and reach the set
⋃
U∈W U). Hence, the guaranteed mean-

payoff is not impacted by the changes described in Def. 12.27: it remains strictly

positive in all states. By virtue of this, we deduce that

∀ s ∈ S, EP
′[λe1]

s (MP) ≥ EP
′[λwc

1 ]
s (MP) > 0,

and as such, that strategy λe1 will not prescribe staying in the set (
⋃
U∈E U) \

(
⋃
U∈W U) forever. Indeed, it is always beneficial to exit it and obtain a strictly

positive expectation instead of an expectation equal to zero (recall all edges

involving negligible states are mapped to weight zero by Def. 12.27). C

Defining a global strategy. Based on the memoryless strategies λe1 and λwc1

in game G (as defined above), and the pure finite-memory witness-and-secure

strategy λwns1 in winning ECs (as presented in Def. 12.26),8 we build a global

strategy λglb1 in G as follows. This strategy is parameterized by a natural con-

stant N ∈ N.

Definition 12.29. In a game G, we define the global strategy λglb1 ∈ ΛPF1 (G) as

follows.

(a) Play λe1 ∈ ΛPM1 (G) for N steps.

(b) Let s ∈ S be the reached state.

(b.1) If s ∈ U ∈ Uw, play the corresponding strategy λwns1 ∈ ΛPF1 (G)

forever.

(b.2) Else play λwc1 ∈ ΛPM1 (G) forever.

Let us sketch this strategy. In phase (a), the optimal expectation strategy

in P ′ is followed. It will drive the outcomes toward the ECs with the highest

expected values. By taking N large enough, we can ensure that the probability

of being in an EC will be arbitrarily close to one (by Lemma 12.6). As a result of

the weights modification described in Def. 12.27, we can further ensure that the

probability of being inside a winning EC will be arbitrarily close to one. Note

8Parameters K and L may vary depending on the actual corresponding EC.
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that in phase (b.1), the witness-and-secure strategy guarantees satisfaction of

the worst-case requirement while granting an expectation arbitrarily close to the

optimal expectation of the EC (as proved in Sect. 12.4.2). Also, in phase (b.2),

the mean-payoff of outcomes is strictly positive, and the probability of being

in (b.2) can be arbitrarily close to zero for large enough values of N . Overall, we

obtain that λglb1 satisfies the worst-case requirement because the strategies played

in the two terminal phases, (b.1) and (b.2), all guarantee its satisfaction and

the mean-payoff is prefix-independent (hence it is not impacted by phase (a)).

Furthermore, the expectation of λglb1 can be arbitrarily close to the maximal

expectation ν∗ achievable in P ′ (i.e., the one achieved by λe1) by taking sufficiently

large values for the constants K, L and N . Hence, if ν∗ > ν, λglb1 is a proper

BWC satisfying strategy for P1.

Finally, ν∗ constitutes an upper bound to the expectation of any strategy

of P1 in P ′. By Lemma 12.13, it is also an upper bound on the expectation of

any strategy that satisfies the worst-case requirement in the original game and

MDP. It follows that if ν∗ ≤ ν, then there exists no finite-memory strategy that

satisfies the BWC problem.

As the validity of the preprocessing was shown in Sect. 12.2, this let us

conclude that algorithm BWC MP is both correct and complete.

Illustration. Consider the game G depicted in Fig. 12.1 and the associated

MDP P = G[λstoch2 ]. Following Lemma 12.6, analysis of the maximal ECs U1, U2

and U3 reveals that the maximal expected mean-payoff achievable in P is 4. It is

for example obtained by the memoryless strategy that chooses to go to s2 from

s1 and to s4 from s3. Observe that playing in U1 forever is needed to achieve

this expectation. By Lemma 12.13, this should not be allowed as the worst-case

cannot be ensured if it is. Indeed, P2 can produce worst-case losing outcomes

by playing the −1 edge. Clearly, the maximal expected value that P1 can ensure

while guaranteeing the worst-case requirement is thus bounded by the maximal

expectation in P ′, i.e., by 3. Let λe1 denote an optimal memoryless expectation

strategy in P ′ that tries to enter U2 by playing (s1, s2) and (s3, s5), and then

plays edge (s6, s8) forever (Fig. 12.4).

Observe that algorithm BWC MP answers Yes for any thresholds pair (0, ν)

such that ν < 3. For the sake of illustration, we construct the global strategy λglb1

as presented in Def. 12.29 with N = 6 and K = L = 2. For the first six steps,
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Figure 12.4: Putting all weights outside WECs to zero naturally drives the
optimal expectation strategy in P ′, depicted by the thick edges, toward the
highest valued WECs. ECs are annotated with their corresponding optimal
expectations in the original MDP P and the modified MDP P ′.

it behaves exactly as λe1. Note that after the six steps, the probability of being

in U2 is 1/4 + 1/8 = 3/8. Then, λglb1 switches to another strategy depending on

the current state (λwns1 or λwc1 ) and sticks to this strategy forever. Particularly,

if the current state belongs to U2, it switches to λwns1 as described in Def. 12.26

for K = L = 2, which guarantees the worst-case threshold and induces an

expectation of 13/6 (Sect. 12.4.2). By definition of λglb1 on the sample game G,

if the current state after six steps is not in U2, then λglb1 switches to λwc1 which

guarantees a mean-payoff of 1 by reaching state s9 and then playing (s9s10)ω.

Overall, the expected mean-payoff of λglb1 against λstoch2 is

EG[λglb1 ,λstoch2 ]
s1 (MP) ≥ 3

8
· 13

6
+

5

8
· 1 =

23

16
.

Notice that by taking N , K and L large enough, it is possible to satisfy the BWC

problem for any ν < 3 with the strategy λglb1 . Also, observe that the winning

EC U2 is crucial to achieve expectations strictly greater than 2, which is the
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upper bound when limited to EC U3. For example, N = 25 and K = L = 2

implies an expectation strictly greater than 2 for the global strategy.

Lastly, note that in general, the maximal expectation achievable in P ′ (and

thus in P when limited to strategies that respect the worst-case requirement)

may depend on a combination of ECs instead of a unique one. This is transparent

through the solving of the expected value problem in the MDP P ′. Hence, the

approach followed by algorithm BWC MP is a way of solving a complex problem

by breaking it into smaller pieces.

Correctness and completeness. We start by proving the correctness of the

algorithm BWC MP described in Alg. 12.1 and the soundness of the global

strategy presented in Def. 12.29 to satisfy the BWC problem.

Lemma 12.30 (correctness). If algorithm BWC MP answers Yes, then there

exist values of the parameters such that the global strategy λglb1 ∈ ΛPF1 satisfies

the BWC mean-payoff problem.

Proof. We assume the answer returned by BWC MP is Yes and we prove the

claim.

First, consider the worst-case requirement (eq. (11.1)). Let λ2 ∈ Λ2 be an

arbitrary strategy of P2. Let N take an arbitrary value in N, and for any winning

EC U ∈ Uw, let KU take an arbitrary value in N and LU be defined according to

Def. 12.21 with regard to KU . Consider the outcomes consistent with λglb1 and λ2.

Our goal is to prove that for all outcomes π ∈ OutsG(sinit, λ
glb
1 , λ2), we have that

MP(π) > 0. Let π be an arbitrary outcome in this set, s = Last(π(N)) be the

state reached after phase (a) of the global strategy, and π′ be the suffix play

such that π = π(N) · π′. Two cases are possible. First, assume s ∈ U for some

maximal winning EC U ∈ Uw. Then, π′ is consistent with the witness-and-secure

strategy λwns1 (as presented in Sect. 12.4.2 for initial states in U). By Thm. 12.25,

MP(π′) > 0. Second, assume s 6∈
⋃
U∈Uw

U , i.e., s ∈ Sneg. Then, π′ is consistent

with the worst-case winning strategy λwc1 provided by the preprocessing, and

we have that MP(π′) > 0. By prefix-independence of the mean-payoff value

function, we conclude that in both cases, MP(π) = MP(π′) > 0, proving that

strategy λglb1 ensures the worst-case requirement.

Second, consider the expected value requirement (eq. (11.2)). We need to

prove that EG[λglb1 ,λstoch2 ]
sinit (MP) > ν for some well-chosen values of N and K ∈ N.
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Formally, the value KU may be different in each winning EC U ∈ Uw, so we

will take a uniform value K sufficiently large to ensure that it works for all ECs.

Values LU (K) are defined according to Def. 12.21. Again noting that the weights

encountered during phase (a) of strategy λglb1 have no impact on the mean-payoff

of plays (because phase (a) is of finite duration and all weights are also finite),

we formulate the expectation as

EG[λglb1 ,λstoch2 ]
sinit (MP) =

∑
U∈Uw

[
pN (U) · eK(U)

]
+
∑
s∈Sneg

[
pN (s) · ewc(s)

]
, (12.10)

where pN (U) denotes the probability to be in a state belonging to the maximal

winning EC U ∈ Uw after N steps of following strategy λe1 (i.e., phase (a));

eK(U) denotes the expectation of plays starting in U and consistent with λwns1

for values K and LU (K) of the parameters (this expectation is identical for all

initial states in the EC); pN (s) denotes the probability to be in a given negligible

state s ∈ Sneg (i.e., outside of winning ECs) after phase (a); and ewc(s) denotes

the expectation over plays that start in such a state s and are consistent with

the worst-case strategy λwc1 . Observe that
∑

s∈Sneg
pN (s) = 1−

∑
U∈Uw

pN (U).

Similarly, we write the expectation of the optimal expectation strategy λe1
in P ′ as

EG
′[λe1,λ

stoch
2 ]

sinit (MP) =
∑
U∈Uw

[
p(U) · e(U)

]
, (12.11)

where p(U) and e(U) denote the probability and the expectation of maximal

winning ECs when strategy λe1 is followed forever. Note that eq. (12.11) depends

uniquely on winning ECs by consequence of Rem. 12.28, and specifically maximal

winning ECs by further application of Lemma 12.8. In addition, observe that

EG
′[λe1,λ

stoch
2 ]

sinit (MP) = EG[λe1,λ
stoch
2 ]

sinit (MP) = ν∗,

since the weight modification of Def. 12.27 does not alter winning ECs.

We claim that EG[λglb1 ,λstoch2 ]
sinit (MP) tends to ν∗ when N and K tend to infinity.

We study the terms of eq. (12.10). Note that ewc takes a bounded value (in ]0, W ]

by definition of λwc1 ). By application of the analysis developed in Lemma 12.24
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and Theorem 12.25, we have that

∀U ∈ Uw, eK(U) −−−−→
K→∞

e(U).

Furthermore, by definition of λe1 we have that

∀U ∈ Uw, pN (U) −−−−→
N→∞

p(U),

and by definition of the modified weight function (Def. 12.27) and Rem. 12.28,

that ∑
U∈Uw

pN (U) −−−−→
N→∞

∑
U∈Uw

p(U) = 1.

Summing up, we obtain that EG[λglb1 ,λstoch2 ]
sinit (MP) −−−−−−→

N,K→∞
ν∗. By convergence, for

all ε > 0, there exist N,K ∈ N such that EG[λglb1 ,λstoch2 ]
sinit (MP) ≥ ν∗ − ε. Since

algorithm BWC MP answered Yes, we have that ν∗ > ν. Hence, there exist

values N,K ∈ N such that EG[λglb1 ,λstoch2 ]
sinit (MP) > ν. This concludes the proof.

In order to prove that the algorithm solves the BWC problem (Def. 11.3)

for the mean-payoff value function, we still need to establish its completeness:

if the global strategy does not suffice to satisfy some thresholds pair, then no

finite-memory strategy can do it.

Lemma 12.31 (completeness). If algorithm BWC MP answers No, then

there exists no finite-memory strategy of P1 that satisfies the BWC mean-payoff

problem.

Proof. By contradiction, assume there exists λf1 ∈ ΛF1 that satisfies the BWC

problem for thresholds (0, ν). We claim that algorithm BWC MP answers Yes.

First, notice that the algorithm cannot answer No at line 5 since λf1 satisfies the

worst-case requirement from the initial state sinit. Hence it remains to prove

that ν∗, as computed by the algorithm, is such that ν∗ > ν. If it is the case, the

algorithm will answer Yes, which proves our claim.

By hypothesis, strategy λf1 induces an expectation EG[λf1 ,λ
stoch
2 ]

sinit (MP) > ν. By
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Lemma 12.13, we have that

EG[λf1 ,λ
stoch
2 ]

sinit (MP) = EG
′[λf1 ,λ

stoch
2 ]

sinit (MP) = EP
′[λf1 ]

sinit (MP),

with G′ the game obtained by the transformation defined in Def. 12.27. More-

over, by definition of the optimal expectation, we have that for all λ1 ∈ Λ1,

ν∗ ≥ EP
′[λ1]

sinit (MP). In particular, this inequality is verified for strategy λf1 . Hence,

we obtain that ν∗ ≥ EP
′[λf1 ]

sinit (MP) > ν. Consequently, the answer of the algorithm

is Yes and the lemma is proved.

In summary, correctness and completeness of algorithm BWC MP as stated

in Thm. 12.1 follows from the combination of Lemma 12.30, Lemma 12.31 and

the validity of the preprocessing, as presented in Sect. 12.2. The complexity of

the algorithm is discussed in the next section (Lemma 12.32), as well as matching

lower bounds for the BWC problem (Lemma 12.34).

12.6 Complexity and Memory Bounds

12.6.1 Complexity: Algorithm and Lower Bound

We first prove that algorithm BWC MP is in NP ∩ coNP (Lemma 12.32). The

classical worst-case threshold problem also belongs to NP ∩ coNP and whether

it is in P or not is a long-standing open problem (as discussed in Sect. 2.3.2).

In Lemma 12.34, we establish that it reduces in polynomial time to the BWC

problem. Given the outstanding nature of the worst-case threshold problem

membership to P, algorithm BWC MP can thus be considered optimal. Fur-

thermore, we observe that if the worst-case threshold problem were proved to be

solvable in deterministic polynomial time, then algorithm BWC MP would also

be in P (Rem. 12.33).

To prove the NP ∩ coNP-membership of the algorithm, we study each of its

computing steps and observe that they all require polynomial time in the size of

the input, except for a polynomial number of calls to an NP ∩ coNP algorithm

solving the worst-case threshold problem. Rem. 12.33 is also induced by this

observation.

Lemma 12.32. Algorithm BWC MP is in NP ∩ coNP.
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Proof. To begin with, note that the size of the input depends polynomially on

(i) the number of states of the input game |Si|, (ii) the number of edges of the

input game |Ei|, (iii) the number of bits of the encoding of weights V i = log2W
i,

(iv) the size of the memory of the SOMM |Mem|, (v) the size of the supports

and the length of the encoding of probabilities for the next-action function αn,

and (vi) the encoding of the thresholds µ, ν ∈ Q.

To prove the NP ∩ coNP-membership of the algorithm, we review each step

sequentially. Lines 1-2 and 4-10 are at most polynomial in the input. Line 3

consists in solving the worst-case threshold problem on the input game Gi: this

can be done by calling an NP ∩ coNP algorithm (Sect. 2.3.2). Overall, the

preprocessing is in NP∩ coNP and produces a game G which size is bounded by

|G| ≤ |Gi| · |M(λi2)|, using the natural definitions of those sizes as polynomial

functions of the values described in points (i) to (vi).

For the main algorithm, the complexities are as follows. Line 11 is the call to

the sub-algorithm MWEC(P∆), which has been proved to work in NP ∩ coNP

in Lemma 12.9. Note that the size of P = G[λstoch2 ] is polynomial in the input.

The weights modification (line 12) requires linear time (polynomial in the input

game) as do lines 14-17. Finally, computing the maximal expected value on

P ′ (line 13) is polynomial in |P ′| via linear programming (Sect. 2.3.2), hence

polynomial in the input size.

In conclusion, we observe that all operations of the algorithm are executed at

most once, and each of them belongs to NP∩ coNP, which proves the claim.

Remark 12.33. Assume an algorithm Ptime wc is established to solve the worst-

case threshold problem in deterministic polynomial time. Then, the complexities

of algorithm BWC MP and sub-algorithm MWEC boil down to a polynomial

number of polynomial-time operations and external calls, and it follows that

BWC MP is in P. C

Reduction of the worst-case threshold problem to the BWC one seems natural

by eq. (11.1). Still, we need to pay attention to the strict inequality in the BWC

problem definition: we use the existence of memoryless winning strategies for

the worst-case problem and careful analysis of the domain of the mean-payoff

values of outcomes to prove that it is not restrictive. The expected value part of

the BWC problem can be defined arbitrarily under certain conditions.
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Lemma 12.34. The worst-case threshold problem on mean-payoff games reduces

in polynomial time to the BWC mean-payoff problem.

Proof. Given a game G = (G, S1, S2), its underlying graph G = (S,E,w), an

initial state sinit ∈ S, and the worst-case threshold µ = 0 (without loss of gener-

ality), the worst-case threshold problem asks if the following proposition is true:

∃λ1 ∈ Λ1, ∀λ2 ∈ Λ2, ∀π ∈ OutsG(sinit, λ1, λ2), MP(π) ≥ 0. (12.12)

By the results presented in Sect. 2.3.2, it is equivalent to restrict both players to

memoryless strategies:

∃λpm1 ∈ ΛPM1 , ∀λpm2 ∈ ΛPM2 , ∀π ∈ OutsG(sinit, λ
pm
1 , λpm2 ), MP(π) ≥ 0. (12.13)

It is well-known that in this context, MP(π) ≥ 0 ⇔ MP(π) > − 1
|S| . Indeed,

consider the following argument. First, the mean-payoff of any outcome π ∈
OutsG(sinit, λ

pm
1 , λpm2 ) can be trivially bounded by −W ≤ MP(π) ≤ W , with W

the largest absolute value of any weight assigned by w to edges of G. Second, con-

sider the decomposition of π into simple cycles (i.e., cycles with no repeated state

except for the starting and ending state). Since weights are integers, any simple

cycle has an associated mean-payoff belonging to {−W, . . . ,− 1
|S| , 0,

1
|S| , . . . ,W}.

As both strategies are memoryless, any outcome π ∈ OutsG(sinit, λ
pm
1 , λpm2 ) will

ultimately consist in a repeated simple cycle. Hence we have that MP(π) ∈
{−W, . . . ,− 1

|S| , 0,
1
|S| , . . . ,W} and we observe that no value can be taken be-

tween − 1
|S| and 0.

Consequently, eq. (12.13) is equivalent to

∃λpm1 ∈ ΛPM1 , ∀λpm2 ∈ ΛPM2 , ∀π ∈ OutsG(sinit, λ
pm
1 , λpm2 ), MP(π) > − 1

|S|
.

To formulate this last equation in terms of a BWC problem, we have to define

an expected value threshold ν ∈ Q and a stochastic model λstoch2 ∈ ΛF2 . Since all

plays π ∈ Plays(G) satisfy MP(π) ≥ −W by definition of the weight function, we

trivially have that

∀λ1 ∈ Λ1, ∀λstoch2 ∈ ΛF2 , E
G[λ1,λstoch2 ]
sinit (MP) ≥ −W.
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Hence, it suffices to fix an arbitrary stochastic model λstoch2 ∈ ΛF2 and an arbitrary

expectation threshold ν < −W to obtain that eq. (12.12) is satisfied if and only

if P1 has a strategy to satisfy the BWC problem for thresholds (− 1
|S| , ν) against

the stochastic model λstoch2 .

Notice this reduction is polynomial because we can choose a simple stochastic

model (e.g., a memoryless strategy requires a SOMM of size linear in the size of

the game) and a value of ν that will not require a super-polynomial growth of

the encodings (e.g., ν = −W − 1).

Our complexity results are summed up in Thm. 12.1.

12.6.2 Memory Requirements

Across the previous sections, we have studied the complexity of deciding the

BWC problem, i.e., deciding the existence of a finite-memory strategy of P1

satisfying Def. 11.3 for the mean-payoff value function. Now, we focus on the

size of the memory used by such a strategy. In Thm. 12.35, we give an upper

bound for the memory of the global strategy described in Def. 12.29 (which has

been shown to suffice if satisfaction of the BWC problem is possible). This is

obtained through careful analysis of the structure of involved strategies (global,

witness-and-secure, combined). All of them are based on alternation between

well-chosen pure memoryless strategies, based on parameters N , K and L ∈ N.

We prove that these values only need to be polynomial in the size of the game

and the stochastic model, and in the values of weights and thresholds, granting

the claim.

Furthermore, we prove this upper bound to be tight in the sense that poly-

nomial memory in the values of weights is needed in general. To establish this

result, we provide a family of games (G(X))X∈N0 , reduced to a winning EC

and where all possible edges are assigned non-zero probability by the stochastic

model (i.e., verifying Assumption 12.15). This family is presented in Fig. 12.5.

By choosing the worst-case threshold to be µ = 0 and the expectation threshold

to be ν ∈ ]1, 5/4[, we ensure that the BWC problem is satisfiable and that it can-

not be achieved by the memoryless strategy that always chooses edge (s1, s2).

Intuitively, it is thus mandatory to choose (s1, s3) infinitely often in order to

achieve the BWC problem. Moreover, after some point, everytime this edge is
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Figure 12.5: Family of games (G(X))X∈N0 requiring polynomial memory in W =
X + 5 to satisfy the BWC mean-payoff problem for thresholds (0, ν ∈ ]1, 5/4[).

chosen, a satisfying strategy must be able to eventually counteract the potential

negative weight −X by taking edge (s1, s2) for bX/2c + 1 times. This proves

that polynomial memory in W is needed.

Theorem 12.35. Memory of pseudo-polynomial size may be necessary and is

always sufficient to satisfy the BWC problem for the mean-payoff: polynomial in

the size of the game and the stochastic model, and polynomial in the weight and

threshold values.

Proof. We first consider the upper bound on memory, derived by analysis of the

global strategy λglb1 (Def. 12.29). Observe that it follows the memoryless strat-

egy λe1 for N steps before switching to phase (b). The correctness of the strategy

(Lemma 12.30) relies on the existence of a value N such that the probability of

being in an EC after N steps is high enough. We argue that N does not need to

be exponentially large.

Consider the probability to be outside of winning ECs after N steps. Apply-

ing classical results on Markov chains, we obtain that this probability decreases

exponentially fast when N grows. Indeed, to prove it, it suffices to consider the

chain G[λe1, λ
stoch
2 ], replace BSCCs by absorbing states and observe that the prob-

ability of absorption tends toward one exponentially fast [GS97]. Now, consider

the expectation of the global strategy for given constants N and K, as given in

eq. (12.10). Let ν < ν∗ − ε be the expected value threshold considered in the

BWC problem (as before, we assume µ < ν < ν∗ otherwise the problem is triv-

ial). Assume that K is sufficiently large to have
∑

U∈Uw
p(U) · eK(U) > ν∗ − ε′,

with ε′ < ε. We want to establish how large N needs to be to ensure an overall

expectation strictly greater than ν. Since ewc(s) can be trivially lower bounded

by zero for all s ∈ Sneg, it is clear that to obtain the needed property, we need to
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have values pN (U) growing polynomially with ε and ν∗. As the growth of pN (U)

is exponential in the growth of the value N , we obtain that a logarithmic value

of N , hence polynomial in the encoding, suffices to achieve the desired expected

value.

Similarly, we study the strategies followed in phase (b) of the global strat-

egy (Def. 12.29). The case (b.2) is the easiest: the worst-case strategy λwc1 is

memoryless. In case (b.1), the witness-and-secure strategy λwns1 is used. By

Def. 12.26, this strategy needs polynomial memory to witness the use of edges

in E \ E∆ and to implement the memoryless secure strategy λsec1 . It also needs

to implement the combined strategy λcmb
1 , based on alternation between memo-

ryless strategies. The size of the memory of λcmb
1 is polynomial in K, L and the

largest absolute value taken by Sum, as well as in the size of the game. The proof

of Lemma 12.20 guarantees that for constant K, a value polynomial in the size

of the input game and the stochastic model, as well as in the values of weights

and thresholds, suffices. By Def. 12.21, an identical situation is verified for L.

Finally, the running sum Sum takes values in {−K ·W, . . . ,K ·W}, hence it also

verifies such bounds. Overall, the memory needed by the combined strategy is

polynomial in the size of the input game and the stochastic model, and in the

weight and threshold values.

Aggregating all these bounds, we conclude that the global strategy also re-

quires memory at most polynomial in the size of the input game and the stochas-

tic model, and in the values, thus proving the upper bound.

It remains to show that pseudo-polynomial memory is really necessary in

general. In order to achieve this, we introduce a family of games, (G(X))X∈N0 ,

such that winning the BWC problem on G(X) requires memory polynomial in

the largest weight W = X + 5. This family is presented in Fig. 12.5. Let the

worst-case threshold be µ = 0 and the expectation threshold be an arbitrary

value ν ∈ ]1, 5/4[. Thanks to Thm. 12.16, the BWC problem is satisfiable,

because G(X) is reduced to a winning EC with no edge of probability zero, and

the optimal expectation is 5/4 > ν (expectation achieved by the memoryless

strategy that always chooses edge (s1, s3)). Notice that it cannot be achieved

by the memoryless strategy that always chooses edge (s1, s2) since this strategy

induces a mean-payoff equal to 1 < ν. Hence it is mandatory to choose (s1, s3)

infinitely often in order to achieve the expected value requirement (eq. (11.2)).
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Let λ1 ∈ ΛF1 be a finite-memory strategy of P1 that satisfies the BWC prob-

lem. Observe that it may as well be pure, i.e., λ1 ∈ ΛPF1 as choosing edge (s1, s3)

with a non-zero probability recurrently yields consistent outcomes that do not

satisfy the worst-case requirement (eq. (11.1)). Also observe that anytime edge

(s1, s3) is chosen, there is a probability 1/2 that the edge of weight −X is taken

to come back. Hence, from some point on, every appearence of this edge of

weight −X must be eventually counteracted in order to preserve the worst-case

requirement. A finite number of non-compensated occurences is not a problem

thanks to the prefix-independence of the mean-payoff value function. Looking

at the involved weights, it is clear that taking the edge (s1, s2) for (bX/2c + 1)

times is necessary to counteract the negative edge of weight −X. Hence, mem-

ory polynomial in X (hence in W ) is needed to ensure both the worst-case and

the expected value requirements for the given thresholds. This concludes our

proof.

12.7 Infinite Memory

We close our study of the BWC problem for the mean-payoff value function by

considering what happens when P1 is allowed to use infinite-memory strategies.

Specifically, we show that in this context, infinite-memory strategies are in gen-

eral strictly more powerful than finite-memory ones: they can exploit losing ECs

to benefit from their possibly higher optimal expected value; and even inside a

single winning EC, they can be optimal with regard to the expectation whereas

finite-memory ones are limited to ε-optimality. Nonetheless, as discussed be-

fore, such strategies are ill-suited for the synthesis of implementable controllers

for real-world applications, hence our focus on finite memory in the previous

results.

Losing end-components may still be useful. Let us consider the game de-

picted in Fig. 12.6, together with a memoryless stochastic model of the adversary

λstoch2 ∈ ΛM2 , modeled by the probabilities 1/10 and 9/10 on the edges leaving s1.

The MDP P = G[λstoch2 ] can be decomposed into two end-components U1 and U2,

as depicted by the dashed lines. Assume the worst-case threshold is µ = −3/2

(notice for once we take it different than zero), then U1 is losing (because P2 can

induce an outcome of mean-payoff value −4/2 ≤ −3/2, and he can do that by



242 Chapter 12 – Beyond Worst-Case Mean-Payoff

s0s1 s2

9
10

1
10

−10

−4

4

0

U1 U2

Figure 12.6: Infinite-memory strategies may use losing ECs forever with a non-
zero probability in order to increase the expected value.

choosing edges in E∆) and U2 is winning (as the only outcome yields mean-payoff

−1 > −3/2), following Def. 12.7.

As shown in Lemma 12.13, any finite-memory strategy of P1 which ensures a

mean-payoff strictly greater than µ, leaves U1 with probability one against λstoch2 ,

because states of U1 are classified as negligible. Therefore, in order to satisfy

the worst-case requirement of the BWC problem, the expected mean-payoff of

any finite-memory strategy of P1 is ν∗2 = −1, i.e., the expectation obtained

in U2 by the only possible outcome. Notice however that if we forget about the

worst-case requirement, the maximal expectation that P1 could achieve in U1 is

ν∗1 = 1
2 · (

9
10 · 4 + 1

10 · (−4)) = 8
5 .

We now show that P1 can ensure the worst-case requirement and obtain an

expected value strictly greater than −1, if he is allowed to use infinite memory.

We define a pure infinite-memory strategy λ1 for P1 as follows: λ1 stores the

running sum along the prefix played so far, and chooses to move from s0 to s1

as long as this sum is strictly greater than zero (except in the first round where

it moves directly to s1). First, notice that this strategy trivially guarantees a

mean-payoff greater than or equal to −1 > µ. Indeed, either the running sum

always stays strictly positive, implying that the mean-payoff is at least zero, or

the running sum gets negative or null at some point, in which case the strategy

switches to U2 and the mean-payoff takes value −1. Second, let us compute

the expected mean-payoff of this strategy against λstoch2 . Let pswitch denote the

probability to switch to U2 along a play, as prescribed by the strategy λ1. By

definition, it is equal to the probability, when playing inside the EC U1 and

starting from an initial credit of zero in state s0, to come back to s0 with a
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credit less than or equal to zero after an arbitrary number of steps. Formally,

let M be the MC induced by the subgame G � U1 and λstoch2 (note that P1 has

no choice in it). We have

pswitch = PMs0
(
{π ∈ OutsM (s0) | ∃ i > 0, Last(π(i)) = s0 ∧ TP(π(i)) ≤ 0}

)
.

Determining the probability pswitch of the running sum hitting zero is equiv-

alent to a well-studied problem on Markov chains, known as the gambler’s ruin

problem (see for instance [GS97]). Applying results on this problem, we obtain

that, if the probabilities 9/10 and 1/10 are respectively replaced by arbitrary

probabilities p and q such that p > q, the probability that the gambler is

eventually ruined is q
p . In our example, this implies that pswitch = 1/9.

We are now able to use this result to provide a lower bound for the expected

value of the strategy λ1. Consider the set of outcomes OutsG(s0, λ1, λ
stoch
2 ): it can

be partitioned into the set of plays that stay in U1, for which the mean-payoff is

trivially bounded by zero as discussed before; and the set of plays that reach U2,

for which the mean-payoff is equal to −1. Hence, the overall expectation respects

the following inequality:

EG[λ1,λstoch2 ]
s0 (MP) ≥ pswitch · (−1) + (1− pswitch) · 0 = −1

9
> −1.

Clearly, we see that strategy λ1 yields an expectation at least equal to −1/9,

hence strictly greater than the expectation achievable by any finite-memory strat-

egy satisfying the BWC problem, which we have shown to be equal to −1.

Intuitively, the added power given by infinite memory comes from the possi-

bility to memorize an unbounded running sum of weights, whereas finite memory

implies an upper bound on such a sum. In the first case, P1 will be able to prop-

erly acknowledge that some plays see their running sum diverging without ever

dropping to zero (the set of such plays has a strictly positive probability in our

example), which lets him benefit from the added expectation without endanger-

ing the worst-case requirement. In the second case, P1 sees all running sums

as upper bounded by some value X ∈ N due to its limited memory. As such,

when he sees a sequence of weights whose total sum is −X, an event that occurs

almost-surely infinitely often when an outcome π is such that Inf(π) = U for

some EC U ∈ L = E \ W, P1 will believe its running sum hits zero, whether it
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really does or not. Consequently, he has to leave U1 to ensure the worst-case

requirement at some point.

Optimal expected values can be reached in winning end-components.

Consider a setting satisfying Assumption 12.15: a game G reduced to a win-

ning EC such that E∆ = E. Let the worst-case threshold be µ = 0, as usual. In

Sect. 12.4.1, we have seen that, for all ε > 0, it is possible to combine a worst-case

strategy λwc1 with an optimal expectation strategy λe1 into a finite-memory strat-

egy λcmb
1 that ensures satisfaction of the BWC problem for thresholds (0, ν∗−ε),

where ν∗ is the maximal expected value in P = G[λstoch2 ]. Observe that in gen-

eral, it is not possible to construct a finite-memory strategy λcmb
1 that ensures

the worst-case while inducing an expected value exactly equal to ν∗ against the

stochastic model. See for example the game G � U3 in Fig. 12.1: clearly, P1 has

to use (s10, s9) infinitely often to ensure the worst-case, and when using finite

memory, the contribution (in terms of proportion of cycles played) of the cor-

responding cycle in the overall expectation can be lower bounded by a strictly

positive probability, hence inducing an expected value strictly lower than ν∗ = 2.

Nonetheless, it is possible to build an infinite-memory strategy, denoted λinf1 ,

that exactly achieves this expectation while verifying the worst-case threshold.

It is in essence similar to the finite-memory combined strategy (Def. 12.18).

Consider the following argument. Observe that in the analysis of the combined

strategy (Sect. 12.4.1), we show that when parameters K and L(K) tend to

infinity, the expectation induced by λcmb
1 tends to ν∗. Moreover, the worst-case

is always ensured by choice of L(K). Hence, we possess all the elements needed

to construct λinf1 : it suffices to implement a strategy that plays as λcmb
1 , but

sequentially increasing the values of K and L(K) up to infinity. Formally, let

(Ki)i∈N be a strictly increasing sequence of naturals, and for all i ≥ 0, let L(Ki)

be the natural given by Def. 12.21. The strategy λinf1 is defined as follows:

- Initialize i to 0.

(a) Play λe1 for Ki steps and memorize Sum ∈ Z, the sum of weights encoun-

tered during these Ki steps.

(b) If Sum > 0, then go to (a).

Else, play λwc1 during L(Ki) steps, then increment i and go to (a).
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By doing so, it is possible to show that λinf1 ensures an expected mean-payoff

exactly equal to ν∗, as well as the worst-case requirement. For the worst-case,

it suffices to apply the reasoning developed in Lemma 12.23. To show that λinf1

achieves the expected value ν∗, the intuitive argument is that the probability

that a period of type (a) is followed by a period of type (b) tends to zero as Ki

grows, since ν∗ > 0. Therefore, the probability that λwc1 is played infinitely many

times is zero.

To illustrate this point, let us consider the example of Fig. 12.1. By play-

ing λinf1 as defined above, P1 can ensure the worst-case requirement and induce

the optimal expected mean-payoff 2, because the proportion of time spent fol-

lowing strategy λe1 will tend to one as the parameter Ki tends to infinity.





CHAPTER 13
Beyond Worst-Case

Shortest Path

Introduction � Pseudo-Polynomial-Time Algorithm � Memory Requirements �
NP-Hardness of the Decision Problem

We study the BWC framework for the shortest path problem. That is, a gener-

alization of the classical graph problem where P1 wants to ensure reachability of

a target set while minimizing cost-to-target.

In Sect. 13.2, we establish a pseudo-polynomial-time algorithm to solve the

BWC problem. Synthesized strategies require at most pseudo-polynomial mem-

ory, and we prove that such memory is necessary in general (Sect. 13.3).

In contrast to the mean-payoff case, our algorithm shows a complexity leap

with regard to the individual worst-case and expected value threshold problems.

We establish that the BWC problem is inherently harder as we prove its NP-

hardness in Sect. 13.4. Hence this problem cannot be solved in truly-polynomial

time unless P = NP.

Those results are joint work with Bruyère, Filiot and Raskin [BFRR13,

BFRR14a,BFRR14b].
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13.1 Introduction

Let us consider a game G = (G, S1, S2) with an underlying graph G = (S,E,w)

such that the weight function w : E → N0 assigns strictly positive integer weights

to all edges, and a target set of states T ⊆ S that P1 wants to reach with a path

of bounded value. That is, P1 aims to ensure some threshold on the truncated

sum value function TST .

In other words, we study the BWC synthesis problem for the shortest path

problem (Sect. 2.3.2). More precisely, given an initial state sinit ∈ S, the goal

of P1 is to ensure to reach T with a path of (truncated) sum strictly lower than

the threshold µ ∈ N (we assume a natural threshold w.l.o.g. as all weights

take positive integer values and so does the truncated sum function for any

play reaching T ) against all possible behaviors of P2 while guaranteeing, at the

same time, an expected cost to target strictly lower than the threshold ν ∈ Q
against the finite-memory stochastic model of the adversary specified by the

SOMMM(λstoch2 ). Notice that regarding Def. 11.3, the inequalities are reversed.

Hence we assume that ν < µ. Equivalently, the problem could be stated with

value function −TST without changing the definition.

13.2 Pseudo-Polynomial-Time Algorithm

To solve the decision problem, we proceed as follows. First, we show how to

construct, from the original game G and the worst-case threshold µ, a new

game Gµ such that there is a one-to-one correspondence between the strategies

of P1 in Gµ and the strategies of P1 in the original game G that are winning for

the worst-case requirement (eq. (11.1)).

To construct this game, we unfold the original graph G, tracking the current

value of the truncated sum up to the worst-case threshold µ, and integrating this

value in the states of an expanded graph G′. In the corresponding game G′, we

then compute the set of states R from which P1 can reach the target set with

cost lower than the worst-case threshold and we define the subgame Gµ = G′ � R

such that any path in the graph of Gµ satisfies the worst-case requirement.

Second, from this new game Gµ and the SOMM M(λstoch2 ) representing the

stochastic model of the adversary, we construct an MDP in which we search
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for a P1 strategy that ensures reachability of T with an expected cost strictly

lower than ν (eq. (11.2)). If such a strategy exists, it is guaranteed that it will

also satisfy the worst-case requirement against any strategy of P2 thanks to the

bijection evoked earlier.

Remark 13.1. Observe that this algorithm is conceptually much simpler than

what we presented in Chap. 12 for the mean-payoff value function. In particular,

it follows a sequential approach: first it deals with the worst-case requirement,

then it optimizes the expected value among the strategies that are safe with

regard to the worst-case.

There is a key difference between mean-payoff and shortest path games that

permits this sequential approach. In shortest path games, the set of all worst-case

winning strategies can be represented as a finite game, based on the unfolding

of the original game up to the worst-case bound. In the mean-payoff setting,

there is no obvious finite representation of the winning strategies. Hence, it is

not possible to follow a sequential approach without losing completeness of the

algorithm. C

This sequential algorithm is depicted through the following example.

Example 13.2. Consider the game G depicted in Fig. 13.1.1 We want to synthe-

size a BWC strategy of P1 that minimizes the expected truncated sum up to the

target set {s3} under the worst-case threshold µ = 8.

s1 s2

s3

1
2

1
2

1

15

1

Figure 13.1: Simple BWC shortest path game with target set {s3} and worst-case
threshold µ = 8.

1We allow a deadlock on the target state for simplicity: it does not change the problem by
definition of the truncated sum value function.
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s1, 0 s2, 1 s1, 2 s2, 3 s1, 4 s2, 5 s1, 6 s2, 7 s1,>
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1
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1

Figure 13.2: Unfolding of the game of Fig. 13.1: worst-case winning requires
to reach a double state. Thick edges represent the strategy that minimizes the
expected cost while ensuring this worst-case.

First, we unfold this game G up to the worst-case threshold (excluded), and

obtain the game G′ represented in Fig. 13.2. Observe that as soon as the worst-

case threshold is reached, we stop the unfolding and associate symbol >: the

worst-case requirement is lost if such states are reached. This guarantees a finite

(and at most pseudo-polynomial size) unfolding.

Therefore, it is clear that a BWC strategy of P1 must ensure reachability of

states of G′ that represent reaching the target state with a truncated sum strictly

less than the worst-case threshold. Those states are depicted by double circles

in the figure. Hence, P1 must stay within the attractor of those double states.

It implies that state (s2, 3) of the unfolding and subsequent states are off-limits.

Knowing that, it now suffices to minimize the expected value within the safe

region, which is achieved by the memoryless (with regard to G′) strategy that

chooses to go in (s2, 1) from (s1, 0) and to (s3, 7) from (s1, 2). This strategy is de-

picted by the thick edges on the figure. Observe that this strategy is memoryless

in G′, hence requires at most pseudo-polynomial memory in G. C

Theorem 13.3. The beyond worst-case problem for the shortest path can be

solved in pseudo-polynomial time: polynomial in the size of the underlying game

graph, the SOMM for the stochastic model of the adversary and the encoding

of the expected value threshold, and polynomial in the value of the worst-case

threshold.

Proof. Let G = (G, S1, S2) be the two-player game, G = (S,E,w) its underlying
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graph, w : E → N0 its weight function, sinit ∈ S the initial state, T ⊆ S the target

set, λstoch2 ∈ ΛF2 the stochastic model of P2, with M(λstoch2 ) = (Mem,m0, αu, αn)

its SOMM, µ ∈ N the worst-case threshold, and ν ∈ Q the expected value

threshold.

Based on G and µ, we define the game G′ = (G′, S′1, S′2). Its underlying graph

G′ = (S′, E′, w′) is built by unfolding the original graph G, tracking the current

value of the truncated sum up to the worst-case threshold µ, and integrating this

value in the states of G′. Formally, we have that

◦ S′1 = S1 × ({0, 1, . . . , µ− 1} ∪ {>}), S′2 = S2 × ({0, 1, . . . , µ− 1} ∪ {>}),
and S′ = S′1 ∪ S′2;

◦ E′ =
{(

(s1, u1), (s2, u2)
)
∈ S′ × S′ | (s1, s2) ∈ E ∧ u2 = u1 + w((s1, s2))

}
,

with the convention that, for all c ∈ N, > + c = >, and, for all u ∈ N,

u+ c = > if u+ c ≥ µ;

◦ ∀ e =
(
(s1, u1), (s2, u2)

)
∈ E′, w′(e) = w((s1, s2)).

The symbol > represents costs exceeding the worst-case threshold µ. The initial

state in G′ is s′init = (sinit, 0), and the target set is T ′ = T ×{0, 1, . . . , µ− 1}, i.e.,

in G′ the target set is restricted to copies of states of the original target set that

are reached with a sum less than µ. Notice that for any state s′1 = (s1,>) ∈ S′,
all its successors in G′ are of the form s′2 = (s2,>).

Now, we compute in G′ the set of states R ⊆ S′ from which P1 has a strategy

to force reaching T ′ using a classical attractor computation, i.e., R = AttrP1
G′ (T

′).

Clearly, all states outside this attractor set are losing for the worst-case require-

ment. Indeed, from any state outside of R, either P1 cannot force reaching a

state s′ = (s, u) with s ∈ T , or he can only do it for u = >. In particular, if

s′init = (sinit, 0) 6∈ R then we know that P1 cannot enforce the worst-case thresh-

old in the original game G, and we can stop here in this case: no strategy exists

for the BWC problem.

Assume that s′init = (sinit, 0) ∈ R. Let us write Gµ = G′ � R. Note that there

will be deadlocks in Gµ (i.e., states with no successors): this is guaranteed since

the sum of weights is strictly growing (recall w : E → N0) and states of the form

(s,>) do not belong to R by definition. However, the only deadlocks will be on

states that are in T ′ ⊆ R (by definition of R as the attractor of T ′). Hence, we

easily get rid of them by adding self-loops of weight zero (this does not change
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the truncated sum of paths up to T ′ by definition of TST ′). It is easy to see that

all strategies λ1 ∈ Λ1(Gµ) are winning for the worst-case requirement, and that

there is a bijection between the winning strategies for the worst-case requirement

in the original game G and the strategies in Gµ.

We are now equipped to handle the expectation objective. We proceed as

follows. First, we take the product of Gµ and M(λstoch2 ) = (Mem,m0, αu, αn),

following the construction of Lemma 12.5 (the proof holds for the truncated sum

value function as well). On the product game, we again preserve correspondence

with the worst-case winning strategies in the original game G. Applying the

memoryless stochastic model (resulting of Lemma 12.5) on the product game, we

obtain an MDP P . It is then clear that P1 has a strategy to enforce an expected

value strictly less than the threshold ν in P if and only if P1 has a strategy that

both enforces the worst-case threshold against any strategy λ2 ∈ Λ2(G), and the

expectation threshold against λstoch2 in G. To decide if such a strategy exists, we

compute the minimal achievable expected value on P and we compare it against

the threshold ν. Thanks to the reduction from truncated sum to total-payoff

proposed in Sect. 2.3.2, we know that this optimal value can be achieved by a

memoryless strategy and its computation can be executed in polynomial time in

the size of the encoding of P via linear programming. Hence, it requires time

polynomial in the size of the encoding of G and M(λstoch2 ), and polynomial in

the value µ (since |S′| = |S| · (µ+ 1)).

13.3 Memory Requirements

In Thm. 13.4, we characterize the memory needed by strategies satisfying the

BWC problem. The construction developed in Thm. 13.3 yields an upped bound

for the memory that is polynomial in the size of the game and the stochastic

model, and in the value of the worst-case threshold. Indeed, the synthesized

strategy is memoryless in the MDP P that is obtained by taking the product of

the expanded game Gµ, such that |Gµ| ≤ |G|·(µ+1), with the SOMMM(λstoch2 ).

Hence the memory needed is bounded by a polynomial in the sizes |G| and

|M(λstoch2 )|, and in the value µ.

We also exhibit a family of games (Fig. 13.3) for which winning the BWC

problem requires memory linear in µ, hence proving that the pseudo-polynomial
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s1 s2

s3

1
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1
2

1
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2

⌋

1

1

Figure 13.3: Family of games requiring memory linear in µ for the BWC problem.

bound is tight. The intuition is as follows. Assume a worst-case threshold

µ ∈ {13 + k · 4 | k ∈ N} (the set is defined in order to ease computations). From

state s1, P1 can ensure reaching the target set T = {s3} at a guaranteed cost

of
⌊µ

2

⌋
. Nevertheless, in order to minimize the expected cost of reaching T , P1

should try to reach it via state s2, as the cost will be diminished. Hence, P1

should play edge (s1, s2) repeatedly, up to the point where playing (s1, s3) be-

comes mandatory to preserve the worst-case requirement (i.e., when the running

sum of weights becomes equal to
⌊µ

2

⌋
as the total cost for the worst outcome will

be 2 ·
⌊µ

2

⌋
< µ). To implement this strategy (Fig. 13.4), P1 has to play (s1, s2)

exactly
⌊µ

4

⌋
times and then switch to (s1, s3). Clearly, this requires memory

linear in µ. The expected value threshold ν can be chosen sufficiently low so

that P1 is compelled to use this optimal strategy to satisfy the BWC problem.

s1, 0 s2, 1 s1, 2 s2, 3 s2,
⌊µ
2

⌋
− 1 s1,

⌊µ
2

⌋

s3, 2 s3, 4 s3,
⌊µ
2

⌋
s3, 2 ·

⌊µ
2

⌋

1
2

1
2

1
2

1
2

1
2

1
21 1 1 1

1 1 1

⌊µ
2

⌋

Figure 13.4: Partial representation of the MC induced by the BWC strategy that
minimizes the expected cost to target in G(µ), µ ∈ {13 + k · 4 | k ∈ N}.
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Theorem 13.4. Memory of pseudo-polynomial size may be necessary and is

always sufficient to satisfy the BWC problem for the shortest path: polynomial

in the size of the game and the stochastic model, and polynomial in the worst-case

threshold value.

Proof. The upper bound on the size of the memory can be obtained directly from

the construction exposed in the proof of Thm. 13.3. Indeed, we have shown that

if the BWC problem can be satisfied, the memoryless strategy that minimizes

the expectation in the MDP P does satisfy it. Translated back to the original

game, this strategy has a memory which is polynomial in |G|, |M(λstoch2 )|, and

the value of µ. Intuitively, the strategy needs to memorize the current value of

the sum of weights, up to the value of the worst-case threshold (at which point it

does not matter to bookkeep it anymore as P1 has already failed to enforce the

worst-case requirement). Hence, such a strategy requires memory polynomial in

the input game and the stochastic model, and in the threshold.

To prove that pseudo-polynomial memory may be necessary, we introduce

a family of games (G(µ))µ∈{13+k·4|k∈N}, indexed by the value of the worst-case

threshold. This value is taken in a specific set {13 + k · 4 | k ∈ N} mostly to ease

the following calculations. The family is presented in Fig. 13.3: it consists of

three states S = {s1, s2, s3}. The weight function only assigns strictly positive

weights as assumed in the setting of the shortest path problem. All weights are

equal to 1 except for edge (s1, s3) which has a weight
⌊µ

2

⌋
. Notice that µ is

chosen odd and such that
⌊µ

2

⌋
is even.

We will consider the values of the expectation threshold ν that can be ensured

by a BWC strategy in such a game, under the chosen worst-case threshold µ and

against a stochastic model assigning uniform distributions, and show that to

minimize this value, P1 needs to use linear memory in µ, hence proving the

claim.

First, observe that if the running sum of weights (which is an integer value)

gets strictly larger than
⌊µ

2

⌋
, then P1 loses the worst-case requirement (eq. (11.1))

as playing (s1, s2) does not guarantee reaching T , and playing (s1, s3) induces

a total cost at least equal to µ. Hence, when in s1 with a running sum equal

to
⌊µ

2

⌋
, P1 has no valid choice but to take the edge (s1, s3). Since randomization

clearly does not help (as it will produce consistent outcomes that are losing if the

edge (s1, s2) is repeatedly assigned a non-zero probability), defining the optimal
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strategy of P1 boils down to deciding for how long he should take the edge (s1, s2)

before switching (if at all).

We claim that it should maximize the number of passes in s2 (Fig. 13.4).

Let n denote the number of times P1 chooses (s1, s2) before switching. Clearly,

to guarantee satisfaction of the worst-case requirement, we need 2 ·n+
⌊µ

2

⌋
< µ.

Since the threshold is odd, we have 2 · n+
⌊µ

2

⌋
< 2 · n+ µ

2 . Hence, it suffices to

have 2 · n+ µ
2 ≤ µ, or equivalently, n ≤ µ

4 . Note that this bound is linear in the

value of µ.

What remains to prove is that increasing the number of passes results in a

decrease of the expected value. Let e(n) denotes the expected value induced

by the strategy that plays edge (s1, s2) for n times before switching. Careful

computation reveals that e(n) can be expressed as follows:

e(n) =

n−1∑
i=0

1

2i−1
+

1

2n
·
⌊µ

2

⌋
. (13.1)

Our thesis is that for all n ≥ 0, e(n) < e(n− 1). By eq. (13.1), that is

n−1∑
i=0

1

2i−1
+

1

2n
·
⌊µ

2

⌋
<

n−2∑
i=0

1

2i−1
+

1

2n−1
·
⌊µ

2

⌋
,

1

2n−2
− 1

2n
·
⌊µ

2

⌋
< 0,⌊µ

2

⌋
>

2n

2n−2
= 4,

µ > 9,

and the last inequality is granted thanks to the hypothesis that µ ∈ {13 + k · 4 |
k ∈ N}. This shows that increasing n decreases the expectation, as wanted.

In conclusion, the optimal BWC strategy for the expected value criterion

consists in playing (s1, s2) for exactly n =
⌊µ

4

⌋
times, then swithing to (s1, s3)

to ensure the worst-case (the corresponding MC is represented in Fig. 13.4).

Following our computations, it is possible to impose that playing this strategy

is necessary to satisfy the BWC problem by taking the expected value threshold

such that e(n) < ν ≤ e(n − 1). This proves that memory linear in µ is needed

for the given family of games.
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Remark 13.5. In contrast to the case of the mean-payoff value function (as pre-

sented in Sect. 12.7), infinite memory gives no additional power in the shortest

path context. Indeed, the proof of Thm. 13.3 gives a complete representation of

worst-case winning strategies through the game Gµ and it is further proved that

finite memory suffices to define an optimal strategy with regard to the expected

value criterion among these worst-case winning strategies. C

13.4 NP-Hardness of the Decision Problem

We conclude our study of the BWC problem in the shortest path setting (i.e., for

the truncated sum value function) by showing that it is very unlikely that a truly-

polynomial (i.e., also polynomial in the size of the encoding of the worst-case

threshold) time algorithm exists, as we establish in Thm. 13.6 that the decision

problem is NP-hard. Actually, it is likely that the problem is not in NP at all,

since we prove a reduction from the Kth largest subset problem which is known

to be NP-hard and commonly thought to be outside NP as natural certificates

for the problem are larger than polynomial [GJ79].

The Kth largest subset problem is expressed as follows. Given a finite set A,

a size function h : A → N0 assigning strictly positive integer values to elements

of A, and two naturals K,L ∈ N, decide if there exist K distinct subsets Ci ⊆ A,

1 ≤ i ≤ K, such that h(Ci) =
∑

a∈Ci h(a) ≤ L for all K subsets. The NP-

hardness of this problem was proved in [JK78] via a Turing reduction from the

partition problem.

The key steps of the reduction are as follows. We build a game composed

of two gadgets. The random subset selection gadget (Fig. 13.5) stochastically

generates paths that represent subsets of A. It has the important property that

all subsets are equiprobable.

a1 a2 a3 an choice

1
2

1
2

1
2

1
2

1
2

1
2

hn(a1) hn(a2) hn(an)

1 1 1

Figure 13.5: Random subset selection gadget: an element is selected in the subset
if the upper edge is taken when leaving the corresponding state.
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choice

swc

se

target

0

1

1

1

1

0

x3

x2

x1

Figure 13.6: Choice gadget: choosing se is best for the expected value, but it
is safe with regard to the worst-case if and only if the random subset selection
produced a subset C such that h(C) ≤ L.

The choice gadget follows (Fig. 13.6). In it, P1 decides either to go to se,

which leads to lower expected values (and lower is better in our setting) but may

be dangerous for the worst-case requirement, or to go to swc, which is always

safe with regard to the worst-case threshold but induces an higher expected cost.

The trick is to prove that we can define values of the thresholds and the weights

used in the gadgets such that an optimal2 strategy for P1 consists in choosing

state se only when the randomly generated subset C ⊆ A satisfies h(C) ≤ L,

as asked by the Kth largest subset problem; and such that this strategy satisfies

the BWC problem if and only if there exist K distinct subsets that verify this

bound, i.e., if and only if the answer to the Kth largest subset problem is Yes.

Theorem 13.6. The beyond worst-case problem for the shortest path is NP-hard.

Proof. We establish a reduction from the Kth largest subset problem: given a

finite set A = {a1, . . . , an} (hence n = |A|), a size function h : A→ N0, and two

naturals K,L ∈ N, decide if there exist K distinct subsets Ci ⊆ A, 1 ≤ i ≤ K,

such that h(Ci) =
∑

a∈Ci h(a) ≤ L for all K subsets. This problem is known to

be NP-hard [JK78,GJ79]. Note that the restriction to N0 for the codomain of h

in place of N is w.l.o.g. as the problem is satisfied for A, K, L and h : A→ N if

and only if it is satisfied for A′ = A\{a ∈ A | h(a) = 0}, K ′ =
⌊

K
2|A|−|A′|

⌋
, L′ = L

and h′ : A′ → N0 such that for all a ∈ A′, h′(a) = h(a). Obviously, we should

have K ≤ 2n, otherwise the problem is trivial since we cannot find a sufficient

number of distinct subsets.

2Minimizing the expectation while guaranteeing a given worst-case threshold.
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Before giving the details of our reduction, we define, given A and h, the

function hn : A → N0 such that for each a ∈ A, hn(a) = (n + 1) · h(a). Clearly,

it satisfies the following property:

∀C ⊆ A, h(C) ≤ L⇔ hn(C) ≤ (n+ 1) · L. (13.2)

We now present two gadgets useful to construct a game and an associated

BWC shortest path problem such that the answer to the Kth largest subset

problem is Yes if and only if the answer to the BWC problem is also Yes.

First, the fragment of the game graph depicted in Fig. 13.5 is called the

random subset selection gadget. All its states belong to P2, except for the last

one, and model the selection (or not) of an element of A in a subset. Basically,

there is a bijection between paths3 in this gadget and subsets of A: an element

ai ∈ A is selected by the gadget if the outgoing upper edge is taken when leaving

state ai, and not selected when the outgoing lower edge is taken. The stochastic

model followed by P2 in the BWC shortest path problem we construct is the

uniform distribution: the upper and lower edges are equiprobable in all states.

This gadget verifies the following important properties.

1. All subsets are equiprobable: they have probability 1
2n to be selected.

2. If the gadget selects a subset C ⊆ A through the corresponding path pC , the

total sum of weights along pC , denoted by t(pC), is equal to hn(C)+n−|C|.

By eq. (13.2), we have that

∀C ⊆ A, h(C) = L⇔ (n+ 1) · L ≤ t(pC) < (n+ 1) · (L+ 1). (13.3)

Indeed, consider the following. Observe that 0 ≤ n − |C| ≤ n, for any subset

C ⊆ A. Hence the left-to-right implication is trivial. For the converse, we

directly deduce the following equivalent expression:

L− n− |C|
n+ 1

≤ h(C) < L+ 1− n− |C|
n+ 1

.

3To be able to formally distinguish between such paths, which we usually define as sequence
of states, we should introduce dummy states to split edges. We omit this technical trick for the
sake of simplicity.
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The left inequality implies that L−1 < h(C), and since h(C) ∈ N, that L ≤ h(C).

The right inequality implies that h(C) < L + 1, and using the same argument,

that h(C) ≤ L. We conclude that eq. (13.3) is true. Consequently, we define the

value T = (n+ 1) · (L+ 1)− 1, which is an upper bound on the value t(pC) ≤ T
of a path corresponding to a subset C ⊆ A such that h(C) ≤ L.

Now consider the second gadget, called the choice gadget and depicted in

Fig. 13.6. This gadget comes after the random subset selection gadget. Its aim

is to discriminate subsets generated by the preceding gadget based on whether

or not they satisfy the upper bound h(C) ≤ L. Observe the shared choice

state. There, P1 has the choice to go up to state se or down to state swc. Both

belong to P2. Again, probabilities for the stochastic model of the adversary are

depicted in Fig. 13.6. So, in se, an arbitrary strategy of P2 can decide to impose

cost x1 or cost x2 before reaching the target set of the game (notice we have set

the weight of the self-loop to zero on the target set, as discussed previously).

Nonetheless, the stochastic model λstoch2 of P2 assigns probability zero to the

edge of weight x1: the expectation of any strategy of P1 against this stochastic

model will be independent of the value x1. In swc, the cost added is always equal

to x3. Intuitively, we will choose values so that to minimize his expected cost-to-

target, P1 should choose se, but also so that the worst-case requirement implies

that it is only safe to choose this state if the previous path defined a subset that

satisfies the bound h(C) ≤ L given by the Kth largest subset problem.

To complete the description of the reduction, we need to precise the values of

the thresholds µ and ν, and the weights x1, x2 and x3. Assume that we choose

the worst-case threshold and the weights such that:

(a) T +1+x1 +1 ≥ µ, i.e., going to se with a path pC (obtained in the random

subset selection gadget) of cost t(pC) > T (i.e., with a selected subset

C ⊆ A such that h(C) > L by eq. (13.3)) is losing for the worst-case

threshold if P2 takes the edge of weight x1;

(b) T + x1 + 1 < µ and T + x2 + 1 < µ, i.e., going to se with a path pC of cost

t(pC) ≤ T (i.e., h(C) ≤ L) is safe for the worst-case requirement whatever

the choice of P2;

(c) for all C ⊆ A, we have that t(pC) + x3 + 1 < µ, i.e., going to swc is always

safe for the worst-case requirement.
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Then clearly, P1 can always choose to go to swc and ensure the worst-case thresh-

old, but he can go up only if the chosen subset C satisfies h(C) ≤ L, which is

equivalent to say that t(pC) ≤ T . We add the following constraints to the choices

of the expectation threshold and the weights:

(d) in order to minimize the expected truncated sum in the MDP defined by

the stochatic model, the optimal choice for P1 is to always take se when

possible (i.e., when h(C) ≤ L, or equivalently t(pC) ≤ T because of the

constraint (a) defined above);

(e) the expected value ν∗ of this optimal choice satisfies the expectation re-

quirement (i.e., ν∗ < ν) if and only if the number of distinct subsets Ci ⊆ A
verifying h(Ci) ≤ L is larger than or equal to K.

We will now define values such that properties (a) through (e) are ensured.

First, let Q = max{t(pC) | C ⊆ A} = t(pA) be the maximal cost of a path in

the random subset selection gadget (the equality with t(pA) is thanks to the size

function h assigning strictly positive values). We claim the needed properties

are verified for the following values:

µ = 2n+1 · n · (Q+ 2), ν =
K · (T + 2) + (2n −K) · µ

2n
,

x1 = µ− T − 2, x2 = 1, x3 = µ−Q− 2.

Using these, we review each property one-by-one. For (a), we obtain by simple

substitutions

(a) ⇔ T + 1 + µ− T − 2 + 1 ≥ µ ⇔ 0 ≥ 0,

which is obviously true. Similarly, for (b), we have that

(b) ⇔ (T + µ− T − 2 + 1 < µ) ∧ (T + 1 + 1 < µ)

⇔ (−1 < 0) ∧ (T + 2 < 2n+1 · n · (Q+ 2)).
(13.4)

The first term of the conjunction is trivially true so we focus on the second

one. Without loss of generality, we can assume that L < h(A) as otherwise the
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Kth largest subset problem reduces to decide if K ≤ 2n. Thus, we deduce the

inequality T < (n + 1) · (h(A) + 1) − 1. Also note that, by definition, we have

that Q = t(pA) = hn(A) = (n+ 1) · h(A). Using these inequalities in eq. (13.4),

we derive that proving the following central inequality suffices to obtain (b):

T + 2 < (n+ 1) · (h(A) + 1) + 1 ≤ 2n+1 ·n · ((n+ 1) ·h(A) + 2) = 2n+1 ·n · (Q+ 2).

This boils down to

(2n+1 · n− 1) · (n+ 1) · h(A) + (2 · 2n+1 − 1) · n− 2 ≥ 0,

which is true for n ≥ 1 (which we can assume otherwise A = ∅ and the problem

is trivial). Hence, property (b) is verified by our choice of values. Now, consider

property (c). We have

(c) ⇔ t(pC) + µ−Q− 2 + 1 < µ ⇔ t(pC) < Q+ 1,

which is true by definition of Q as the maximum over the values of paths. Re-

garding property (d), we have to show that choosing se gives an expectation

strictly lower (recall we want to minimize it) than choosing swc. Observe that

due to the particular structure of the game graph, the strategy of P1 is restricted

to this one-shot choice of edge. Note that in this expected value context, the

actual value obtained in the random subset selection gadget does not matter to

decide whether to go to se or to swc: hence it suffices to look at the expecta-

tion from the choice state up to the target state. For se, it is trivially equal

to 1 + 1 = 2 as the stochastic model λstoch2 of P2 always chooses the edge of

weight x2. For swc, this expectation is equal to

1 + x3 = 1 + µ−Q− 2 = 2n+1 · n · (Q+ 2)−Q− 1

≥ (2n+1 · n− 1) · (Q+ 2) ≥ (Q+ 2) > 2,

and we obtain the claim (d). Note that an actual strategy that satisfies the BWC

problem will only be able to choose se if the selected path satisfies the bound

t(pC) ≤ T , as discussed in properties (a) and (b).

Finally, it remains to show the most involved property (e): proving it will

conclude our reduction as we will obtain that the answer to the Kth largest subset
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problem is Yes if and only if the answer to the BWC problem we have defined

is Yes. Note that combining the already proved properties (a) through (d), we

know that the strategy λ1 ∈ ΛPF1 that chooses state se when t(pC) ≤ T and

state swc otherwise, yields the minimal expectation value ν∗ under the worst-

case constraint of threshold µ. Hence, it suffices to study this strategy to answer

the BWC problem. Our claim is thus that

ν∗ = EG[λ1,λstoch2 ]
a1 < ν ⇔

∣∣∣ {C ⊆ A | h(C) ≤ L}
∣∣∣ ≥ K, (13.5)

with G and λstoch2 the game and stochastic model we defined.

For the left-to-right implication, we reason by contradiction and show that

if there is only K − 1 (or less) distinct subsets whose sum is less than or equal

to L, then strategy λ1 has an expected cost larger than or equal to ν. To show

that, we use the fact that all paths (i.e., subsets) have equal probability in the

random subset selection gadget, and establish that a lower bound on the sum of

all the paths under this strategy reaches or exceeds 2n · ν. Recall that P2 follows

its stochastic model λstoch2 for this matter. First, let LBe = 0 which is trivially

a lower bound for the cost of all the paths that goes through se. Second, let

LBwc = (2n− (K−1)) · (T +1+x3 +1): it is clearly a lower bound for the sum of

the values of paths that go through state swc when P1 follows strategy λ1. We

have that 2n · ν∗ ≥ LBe + LBwc. Let us now establish that LBwc ≥ 2n · ν and we

will be done. We proceed as follows.

LBwc − 2n · ν = (2n −K + 1) · (T + 1 + µ−Q− 2 + 1)

−K · (T + 2)− (2n −K) · µ
= µ+ (2n −K + 1) · (T −Q)−K · (T + 2)

= 2n+1 · n · (Q+ 2) + (2n −K + 1) · (T −Q)−K · (T + 2)

Recall that T,Q ≥ 0, n ≥ 1 and 0 ≤ K ≤ 2n (otherwise the answer is triv-

ially No). Furthermore, T is the upper bound on the values of paths pC repre-

senting good subsets, i.e., subsets C ⊆ A such that h(C) ≤ L. This value is used

by the strategy λ1 implemented by P1 to decide whether going to se is safe with

regard to the worst-case requirement or not. As such, we can assume that T ≤ Q,

otherwise all paths are safe and the answer to the problem is trivially Yes (since
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all subsets respect the bound and K ≤ 2n). Using K ≤ 2n, T ≥ 0 and T ≤ Q,

we can write

LBwc − 2n · ν ≥ (2n+1 · n− 2n +K − 1−K) ·Q+ (2n+1 · n · 2− 2 ·K). (13.6)

To prove that this last expression is non-negative, we analyze its terms. We

know that Q ≥ 0. For its coefficient, we have

2n+1 · n− 2n − 1 ≥ 2n − 1 ≥ 0

because n ≥ 1. For the last term, we use K ≤ 2n and obtain that

2n+2 · n− 2 ·K ≥ 2n+2 − 2n+1 = 2n+1 ≥ 0.

Hence all terms of eq. (13.6) are non-negative and LBwc ≥ 2n · ν, proving that

the left-to-right implication of eq. (13.5) is verified.

It remains to prove the right-to-left implication. Assume there are exactly K

distinct subsets of sum less than or equal to L (if there are more, then the bounds

below are easier to obtain). We claim that strategy λ1 ensures an expected

truncated sum ν∗ strictly lower than ν. To show this, we establish that the total

sum of the outcomes under this strategy of P1 and the stochastic model of P2 is

strictly bounded from above by 2n · ν, and the claim follows thanks to all paths

being equiprobable in the random subset selection gadget. First, consider the

paths that go through se (i.e., all the paths corresponding to subsets C such that

h(C) ≤ L). By definition of λ1 and our hypothesis, there are exactly K such

paths. We define UBe = K · (T + 2), a clear upper bound for the sum of the

values of these paths, by definition of T and λstoch2 . Second, there are (2n −K)

paths that go through swc. Let UBwc = (2n−K) ·(Q+1+x3) = (2n−K) ·(µ−1)

be a bound for the sum of the values of all these paths. Clearly,

2n · ν∗ ≤ UBe + UBwc = K · (T + 2) + (2n −K) · (µ− 1)

< K · (T + 2) + (2n −K) · µ = 2n · ν

by definition of the expected value threshold ν, and so we are done for this

direction.

Having verified both directions of the equivalence given in eq. (13.5), the
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correctness of our reduction from the Kth largest subset problem is established.

Note that it requires values of the thresholds that are exponential in the size of

the set A and polynomial in the value of the largest weight assigned by the size

function h (or equivalently, exponential in its encoding) for the Kth largest subset

problem. It also requires to use edge weights that are polynomial in these values.

Observe that this is not a problem, as all those values may be represented using

a logarithmic number of bits, hence polynomially in the characteristics of the

initial Kth largest subset problem. Finally, notice that we do need to consider

exponential constants in our game to obtain the NP-hardness of our problem, as

for values polynomial in the size of the game, the algorithm described in Sect. 13.2

actually operates in truly-polynomial time. This concludes our proof.
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Conclusion and Future Work

Conclusion � Future Work

We first give a brief summary of our contributions in Sect. 14.1. We discuss our

main models and results, and how they fit in the advocated shift toward multi-

criteria quantitative models. We examine some limitations of our work and how

they can be addressed. We also review precise questions left open by our thesis.

We close the thesis with an overview of promising research directions linked

to our work, presented in Sect. 14.2. This last section is more speculative, mixing

concrete questions under our study and long-term prospects.

267
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14.1 Conclusion

Research focus. As discussed in Sect. 1.2, we started this thesis from an

observation. Since the last decade, there has been a growing trend in the study

of quantitative models for verification and synthesis (e.g., [CdAHS03,BCHJ09]).

This is well-justified by the need to construct system controllers that are not

only functionally correct but also efficient. To that end, quantitative extensions

of the classical game-theoretic framework were introduced, resulting in many

interesting models, both on the fundamental level and considering applicability

(e.g., [EM79, BFL+08, GS09]). Some of the most well-known classes of games

were discussed in Chap. 2.

A lot of different aspects can be considered in quantitative models. Tech-

niques and results vary depending on the type of winning objective (e.g., mean-

payoff, total-payoff, energy), on the underlying model (e.g., turn-based game,

Markov decision process) or on the considered semantics for winning strategies

(e.g., worst-case, expected value). However, most existing models can be charac-

terized as single-criterion: it is not possible to express situations where several

of these aspects are mixed.

While difficult questions remain open for single-criterion models, such as

whether one-dimension mean-payoff games are in P or not [EM79, ZP96, Jur98,

BCD+11], the research community has acknowledged the need for multi-criteria

quantitative models. Indeed, in practice the performance of reactive systems

is impacted by interplays and trade-offs between several criteria. Progress has

been made in studying multi-dimension quantitative objectives [CDHR10,VR11],

conjunctions with a parity objective [CHJ05, BMOU11, CD12], or even in the

study of trade-offs between expected value and variance in stochastic mod-

els [MT11,BCFK13].

Our contributions participate in the shift from single-criterion quantitative

models to multi-criteria quantitative models. We have studied three important

settings: multi-dimension quantitative games (with mean-payoff, total-payoff,

energy in conjunction with parity objectives), games with window objectives and

the beyond worst-case synthesis framework (combining worst-case and expected

value). Recall that a detailed overview of our most important results is presented

in Chap. 3.
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Multi-dimension objectives. In Chap. 4, we reviewed existing results for

multi-dimension quantitative objectives and conjunction of a quantitative objec-

tive with a parity one. We presented the first study of multi-dimension total-

payoff games and proved that they are undecidable for games with five dimen-

sions or more. This is surprising as it demonstrates the loss of a strong similarity

with the mean-payoff objective that is verified in the one-dimension case.

Open problem 1. Can we prove (un)decidability of total-payoff games with

k = 2, 3 or 4 dimensions?

In Chap. 5, we gave tight exponential bounds on memory for multi-dimension

energy objectives in conjunction with parity. Those results extend to multi-

dimension mean-payoff parity games under finite-memory strategies. We im-

proved existing results [BJK10] from a triple exponential to a single one. Bound-

ing the complexity of controllers is a key concern in applications of synthesis.

We established an optimal synthesis algorithm for such strategies in Chap. 6.

Our algorithm was conceived to be symbolic and incremental in order to be

efficient in most applications despite the exponential worst-case bound. The

practical relevance of our approach was proved by Bohy et al., who implemented

an efficient synthesis tool for LTL specifications with mean-payoff objectives

based on our algorithm [BBFR13].

Observe that our algorithm answers the unknown initial credit problem: it

guarantees finding a winning strategy and a finite initial credit vector if they

exist. However, it does not answer the fixed initial credit problem which is to

decide, given a credit vector, if it suffices to win. This problem has been proved

to be EXPSPACE-hard [BJK10, FJLS11] hence cannot be tackled by our algo-

rithm unless EXPSPACE = EXPTIME. Abdulla et al. presented an algorithm

that can solve this problem, partly based on our results, but its complexity is

open [AMSS13]. The complexity gap between our EXPTIME algorithm and

the EXPSPACE-hardness of the fixed initial credit problem indicates that there

exist games on which our algorithm does not capture all incomparable credits.

Still, we have not been able to generate such a game. This seemingly reveals

that for most applications, the algorithm captures all winning credits, and that

obtaining a witness game would require intricate technique.

Open problem 2. Can we find a game for which our synthesis algorithm does

not capture all winning credits?
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Finally, in Chap. 7, we gave a precise characterization of the possible trade-off

of memory for randomness in games with multi-dimension mean-payoff, energy

and parity objectives. We established that this trade-off is possible only in

two-player one-dimension mean-payoff parity games and in one-player multi-

dimension mean-payoff parity games. We argued that such strategies can be

conceptually simpler to conceive, at the price of slightly relaxing the winning

semantics.

Window objectives. In Chap. 8, we introduced the concept of window ob-

jectives and studied their relation with classical mean-payoff and total-payoff

objectives. We believe that window objectives are interesting on the standpoint

of expressiveness, as they permit to consider quantitative objectives in a time

frame context. This addresses a desired wish for many practical applications.

Furthermore, window objectives constitute an attractive alternative in terms

of tractability. In Chap. 9, we provided algorithms and optimal complexity

bounds for one-dimension games. We notably argued that the fixed window

variant can be solved in polynomial time, which is not known to be the case for

the mean-payoff and total-payoff objectives [ZP96,Jur98,GS09,BCD+11].

In Chap. 10, we studied the multi-dimension setting. Fixed window games

hold an interesting position. While the associated decision problem is easier

to solve than the worst-case mean-payoff threshold problem in one-dimension

(P instead of UP ∩ coUP), it becomes comparatively harder in multi-dimension

(PSPACE-hard even for polynomial windows instead of coNP). However, it

remains EXPTIME-complete for arbitrary windows, in contrast to the total-

payoff which becomes undecidable. In terms of complexity, the problem stands

in an interesting middle ground between mean-payoff and total-payoff objectives.

For the specific case of polynomial windows, there remains a gap between our

exponential-time algorithm and the PSPACE lower bound.

Open problem 3. Can we obtain PSPACE-membership or EXPTIME-hardness

for the fixed polynomial window problem in multi-dimension games?

Filling this small gap would be interesting from a theoretical point of view

and witness a fundamental difference (or not) between polynomial and arbitrary

windows in the multi-dimension setting.

Still in Chap. 10, we also established a prohibitive lower bound on the

complexity of multi-dimension bounded window games: they are at least non-
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primitive recursive. While this is clearly bad news on the side of applicability, it

would still be of theoretical interest to know if those games are decidable or not.

Open problem 4. Can we prove (un)decidability of multi-dimension bounded

window games?

Observe that techniques used for the undecidability proof of multi-dimension

total-payoff games (Thm. 4.8) cannot be extended easily to the bounded window

setting. In particular, our reduction to two-counter machines require to “mem-

orize” sums of weights both negatively and positively. In the window context,

such sums can only be memorized negatively (i.e., while windows stay open), as

positive windows are closed and forgot immediately (this corresponds to so-called

resets in Sect. 10.1). This at the very least indicates that an undecidability result

would require a different approach.

Beyond worst-case synthesis. In Chap. 11, we paved the way to a new

approach, combining worst-case and expected value requirements in what we

named the beyond worst-case synthesis problem. We believe this setting is ade-

quate for the synthesis of controllers that must ensure strict guarantees under all

circumstances, and prove to be more efficient in reasonable conditions: a prob-

lem for which few theoretical frameworks exist. See [MT11, BCFK13] for work

with similar philosophy but without worst-case guarantees.

We thoroughly studied the beyond worst-case problem in the context of two

well-known quantitative measures: mean-payoff and shortest path.

For the mean-payoff, we proved in Chap. 12 that the problem belongs to

NP ∩ coNP, matching the complexity of the worst-case threshold problem, which

we encompass. Hence, the beyond worst-case setting provides additional mod-

eling power at no complexity cost (in terms of problem solving), a surprisingly

positive result. There are still open questions linked to the mean-payoff setting,

the first one due to our restriction to finite-memory strategies.

Open problem 5. What is the exact power of infinite-memory strategies in the

beyond worst-case mean-payoff setting? Can we obtain algorithms and complexity

bounds for this case?

This question is not trivial as, to the best of our knowledge, some of the

underlying technical results we use do not transfer easily to models with infinite

state spaces. The other open problem is also limited to infinite-memory strate-

gies: under finite memory, supremum and infimum variants of the mean-payoff
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coincide, which does not need to be the case under infinite memory.

Open problem 6. Is the infinite-memory setting easier to tackle when consid-

ering the supremum mean-payoff variant?

In Chap. 13, we studied the beyond worst-case problem for the shortest path.

We proved it becomes harder than the corresponding worst-case threshold prob-

lem, going from polynomial to pseudo-polynomial time, with a complementary

result of NP-hardness.

Open problem 7. Can we prove NP-membership of the beyond worst-case

shortest path problem?

A positive answer seems unlikely as in Sect. 13.4, we prove NP-hardness

by reduction from the Kth largest subset problem which is commonly thought

to be outside NP because natural certificates for the problem are larger than

polynomial [JK78,GJ79].

Both for the mean-payoff and the shortest path, synthesized strategies may

require pseudo-polynomial memory, but accept natural, elegant representations,

based on states of the game and simple integer counters.

A limitation of our results for the mean-payoff is that synthesized strategies

are parameterized by integer values that must be sufficiently large to ensure good

properties. However, we rely on technical results that guarantee the existence

of such values without giving an explicit characterization that permit direct

computation. In practice, this problem does not really impact our techniques.

Indeed, as in the case of the exponential bound for the synthesis algorithm in

multi-dimension energy games (Chap. 6), theoretical values may be very large

while small values do suffice most of the time. In particular, such values may

be too large to be tackled efficiently by synthesis tools: hence we should again

follow an incremental approach (over such parameter values) to generate winning

strategies.

14.2 Future Work

To close this thesis, we discuss several promising research directions. There are

of course numerous extensions that would be worth studying. We concentrate

our presentation on a few complementary axes, all fitting into the shift from

single-criterion quantitative models toward multi-criteria ones.
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Extensions of window objectives. A first potentially interesting extension,

already mentioned in Sect. 8.1.1, is the study of window objectives in a stochas-

tic context. As a first step, we could consider Markov decision processes and

almost-sure semantics, which would adequately fit the problem. Defining rele-

vant problems based on expected value semantics seems challenging in the con-

text of window objectives. Indeed, there is no global value function to optimize

over plays, and considering the expectation over windows may not be the most

natural choice. Hence, the first effort should be put in adequate formalization of

the interesting questions to solve.

A second question to address is the following. In the multi-dimension set-

ting, our definitions of window objectives (Sect. 8.2) are asynchronous: windows

on different dimensions are not required to close simultaneously. Synchronous

variants may be interesting to study but some useful properties are lost in that

setting, such as the inductive property on windows. Hence our techniques cannot

be extended straightforwardly.

Lastly, conjunction of window objectives with a parity objective would be

interesting to consider. Indeed, a similar notion of time bounds on liveness prop-

erties was already studied by Chatterjee et al. through the concept of finitary

winning [CHH09]. Combining a similar approach with our window objectives

seems natural.

Games with mixed objectives. In Part II, we studied games with multi-

dimension quantitative objectives, and conjunctions of quantitative objectives

with a parity condition. To the extent of our knowledge, all existing results on

multi-dimension games are only valid for conjunctions of the same kind of objec-

tives (e.g., several mean-payoff objectives) [CDHR10, VR11, VCD+12, CRR12a,

CRR14,CDRR13a]. We would like to investigate how to mix objectives of differ-

ent natures into unified specifications and synthesize controllers accordingly. For

example, we could study games where the objective is a conjunction of mean-

payoff and shortest path. Other similar combinations could be considered.

Extensions of the beyond worst-case framework. We believe that the

beyond worst-case framework is a powerful one, well-suited for specifications

combining the quest of high expected performance with the need for strong

worst-case guarantees. We want to build on the results presented in this thesis

and consider several extensions of the initial setting.
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The first obvious line of work is applying the same problem to other well-

known quantitative measures and to more general classes of games (for example

decidable classes of games with imperfect information [DDG+10,HPR13]).

A second interesting question is the extension of our results for mean-payoff

and shortest path to multi-dimension games. It is already known that multi-

dimension games are more complex than one-dimension ones for the worst-case

threshold problem alone [CDHR10, VR11]. Hence, a leap in complexity is also

to be expected for the beyond worst-case problem.

Given the relevance of the framework for practical applications, it would cer-

tainly be worthwhile to develop tool suites supporting it. We could for example

build on symblicit implementations recently developed for monotonic Markov

decision processes by Bohy et al. [BBR14].

Other rich behavioral models. Beyond worst-case synthesis provides an

appropriate framework for building controllers that are efficient and strongly

risk averse. Other interesting notions of risk-avoidance have been studied in

the literature [FKR95,WL99]. Similarly, combining expected value and variance

over the outcomes was considered in [MT11,BCFK13].

We believe that other models may also be of interest. In particular, we

study the question of percentile performances in uncertain environments, which

is unexplored. Given a Markov decision process, we want strategies ensuring

specifications such as “at least 90% of the plays achieve a performance level l1

and 50% achieve level l2 > l1.” Such characterizations would be useful in practice

to synthesize controllers with well-understood and reliable performance profiles.

This problem yields interesting links with the theory of multi-objective proba-

bilistic systems [KP13]. The model of quantiles for Markov decision processes, as

studied by Ummels and Baier [UB13], shares some similarities with our question

for the specific case of reachability and accumulated reward.

Links outside computer science are also of interest. Economics is interested

in strategies (i.e., investor profiles) that ensure both sufficient risk-avoidance and

profitable expected return. Mathematical models powerful enough to tackle the

previously discussed problems could be an advantage. A related approach to such

questions is the concept of solvency games introduced by Berger et al. [BKSV08],

and extended by Brázdil et al. [BCF+13]. Solvency games provide a framework

for the analysis of risk-averse investors trying to avoid bankruptcy.
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Closing words. We conclude with a wise advice from the acclaimed author

of The Art of Computer Programming [Knu97a,Knu97b,Knu98,Knu11].

Beware of bugs in the above code; I have only proved it correct, not

tried it.

Donald E. Knuth, Notes on the van Emde Boas construction of

priority deques: An instructive use of recursion.
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and Tomás Vojnar. When simulation meets antichains. In Esparza

and Majumdar [EM10], pages 158–174. Cited in page 93

[Ack28] Wilhelm Ackermann. Zum hilbertschen aufbau der reellen zahlen.

Mathematische Annalen, 99(1):118–133, 1928. Cited in page 165

[AD90] Rajeev Alur and David L. Dill. Automata for modeling real-time

systems. In Paterson [Pat90], pages 322–335. Cited in page 11

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theor.

Comput. Sci., 126(2):183–235, 1994. Cited in page 11

[AH98] Rajeev Alur and Thomas A. Henzinger. Finitary fairness. ACM

Trans. Program. Lang. Syst., 20(6):1171–1194, 1998.

Cited in page 120

[AHK02] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman.

Alternating-time temporal logic. J. ACM, 49(5):672–713, 2002.

Cited in page 4

[AMP95] Eugene Asarin, Oded Maler, and Amir Pnueli. Symbolic controller

synthesis for discrete and timed systems. In Hybrid Systems II,

volume 999 of Lecture Notes in Computer Science, pages 1–20.

Springer, 1995. Cited in page 11

[AMPS98] Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis. Con-

troller synthesis for timed automata. In Proceedings of the 5th IFAC

277



278 Bibliography

Conference on System Structure and Control, pages 469–474. Else-

vier, 1998. Cited in page 11

[AMSS13] Parosh Aziz Abdulla, Richard Mayr, Arnaud Sangnier, and Jeremy

Sproston. Solving parity games on integer vectors. In Pe-

dro R. D’Argenio and Hernán C. Melgratti, editors, CONCUR, vol-

ume 8052 of Lecture Notes in Computer Science, pages 106–120.

Springer, 2013. 2 citations in pages 96 and 269

[Aum64] Robert J. Aumann. Mixed and behavior strategies in infinite exten-

sive games. In Advances in Game Theory, volume 52 of Annals of

Mathematical Studies, pages 627–650. Princeton University Press,

1964. Cited in page 21
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[BBFR13] Aaron Bohy, Véronique Bruyère, Emmanuel Filiot, and Jean-

François Raskin. Synthesis from LTL specifications with mean-

payoff objectives. In Piterman and Smolka [PS13], pages 169–184.

4 citations in pages 89, 98, 121 and 269

[BBMU12] Patricia Bouyer, Romain Brenguier, Nicolas Markey, and Michael

Ummels. Concurrent games with ordered objectives. In Lars

Birkedal, editor, FoSSaCS, volume 7213 of Lecture Notes in Com-

puter Science, pages 301–315. Springer, 2012.

2 citations in pages 12 and 18



Bibliography 279
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Aistis Simaitis. Solvency markov decision processes with interest.

In Anil Seth and Nisheeth K. Vishnoi, editors, FSTTCS, volume 24

of LIPIcs, pages 487–499. Schloss Dagstuhl - Leibniz-Zentrum fuer

Informatik, 2013. Cited in page 274

[BCFK13] Tomás Brázdil, Krishnendu Chatterjee, Vojtech Forejt, and An-
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games in multiweighted automata. In Antonio Cerone and Pekka

Pihlajasaari, editors, ICTAC, volume 6916 of Lecture Notes in Com-

puter Science, pages 95–115. Springer, 2011.

3 citations in pages 50, 95 and 269

[FKR95] Jerzy A. Filar, Dmitry Krass, and Kirsten W. Ross. Percentile

performance criteria for limiting average Markov decision processes.

Transactions on Automatic Control, 40(1):2–10, 1995.

2 citations in pages 180 and 274



Bibliography 291

[FV97] Jerzy Filar and Koos Vrieze. Competitive Markov decision processes.

Springer, 1997. 5 citations in pages 8, 34, 36, 58 and 188

[Gil57] Dean Gillette. Stochastic games with zero stop probabilities. Con-

tributions to the Theory of Games, 3:179–187, 1957.

Cited in page 6

[Gim07] Hugo Gimbert. Pure stationary optimal strategies in Markov de-

cision processes. In Wolfgang Thomas and Pascal Weil, editors,

STACS, volume 4393 of Lecture Notes in Computer Science, pages

200–211. Springer, 2007. 2 citations in pages 8 and 36

[GJ79] Michael R. Garey and David S. Johnson. Computers and intractabil-

ity: a guide to the Theory of NP-Completeness. Freeman New York,

1979. 4 citations in pages 45, 256, 257 and 272

[GKK88] Vladimir A. Gurvich, Alexander V. Karzanov, and L.G. Khachivan.

Cyclic games and an algorithm to find minimax cycle means in di-

rected graphs. USSR Computational Mathematics and Mathemati-

cal Physics, 28(5):85–91, 1988. 2 citations in pages 6 and 36

[GO02] Peter W. Glynn and Dirk Ormoneit. Hoeffding’s inequality for

uniformly ergodic Markov chains. Statistics & Probability Letters,

56(2):143–146, 2002. 3 citations in pages 193, 216 and 217

[GQ11] Ganesh Gopalakrishnan and Shaz Qadeer, editors. Computer Aided

Verification - 23rd International Conference, CAV 2011, Snowbird,

UT, USA, July 14-20, 2011. Proceedings, volume 6806 of Lecture

Notes in Computer Science. Springer, 2011.

2 citations in pages 282 and 294

[GS97] Charles M. Grinstead and J. Laurie Snell. Introduction to probabil-

ity. American Mathematical Society, 1997.

4 citations in pages 105, 193, 239 and 243

[GS09] Thomas Gawlitza and Helmut Seidl. Games through nested fix-

points. In Bouajjani and Maler [BM09], pages 291–305.

8 citations in pages 6, 34, 35, 58, 130, 143, 268 and 270



292 Bibliography
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Glossary of Notations

Graphs

G = (S,E,w) (weighted) directed graph

S set of states

s ∈ S state

sinit ∈ S initial state

Succ(s) ⊆ S successors of state s

E ⊆ S × S set of edges

e ∈ E edge

w : E → Z integer weight function

k dimension of weight vectors

w : E → Zk integer vector weight function

W largest absolute weight on any edge

V = dlog2W e length of the binary encoding of W

G � A subgraph induced by A ⊆ S

Plays

π = s0s1s2 . . . ∈ Sω play

π(n) = s0s1 . . . sn prefix of π up to the n-th state

ρ prefix

π(n,∞) infinite suffix starting in sn

First(π(n)) = s0 first state of π(n)

First(π) = s0 first state of π

Last(π(n)) = sn last state of π(n)
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Plays(G) set of plays of graph G
Prefs(G) set of prefixes of graph G
Inf(π) ⊆ S set of states visited infinitely often along play π

p : S → N priority function

Par(π) parity of play π

Games

P1 first player (i.e., the controller)

P2 second player (i.e., the environment)

G = (G, S1, S2) game

G = (S1, S2, E, w) game (w/o graph reference)

Prefsi(G) prefixes belonging to Pi
|G| size of the game

G � A subgame induced by A ⊆ S
G = (S1, S2, E, k, w) multi-dimension game

Gp = (S1, S2, E, k, w, p) multi-dimension game with parity objective

G∆ games reduced to edges in E∆

Probabilities

d : A→ [0, 1] ∩Q probability distribution over A

D(A) set of all probability distributions over A

Supp(d) support of probability distribution d

Strategies

λi strategy (of Pi)
M(λfi ) SOMM encoding finite-memory strategy λfi
Λi set of general strategies (for Pi)
ΛFi set of finite-memory strategies

ΛPFi set of pure finite-memory strategies

ΛMi set of memoryless strategies

ΛPMi set of pure memoryless strategies

ΛRMi set of randomized memoryless strategies
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Strategies for BWC synthesis

λstoch2 stochastic model of the environment

λwc1 worst-case winning strategy

λe1 optimal expectation strategy

λcmb
1 combined strategy (for WECs with E∆ = E)

λwns1 witness-and-secure strategy (for all WECs)

λglb1 global strategy

L steps for worst-case strategy in combined one

K steps for expectation strategy in combined one

N steps for expectation strategy in global one

Markov Decision Processes

P = (G, S1, S∆,∆) Markov decision process

P = (S1, S∆, E,∆, w) Markov decision process (w/o graph reference)

S∆ set of stochastic states

∆: S∆ → D(S) stochastic transition function

G[λi] MDP resulting from fixing λi in game G

P � A sub-MDP induced by A ⊆ S
U ⊆ S end-component

E ⊆ 2S set of all end-components

E∆ ⊆ E edges with non-zero probability

P∆ MDP reduced to edges in E∆

W ⊆ E set of winning end-components

Uw ⊆ E set of maximal winning end-components

L ⊆ E set of losing end-components

Markov Chains

M = (G, δ) Markov chain

M = (S,E, δ, w) Markov chain (w/o graph reference)

δ : S → D(S) stochastic transition function

A ⊆ Plays(G) event (measurable set of plays)

PMsinit(A) probability measure of event A
EMsinit(f) expected value of f
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G[λ1, λ2] MC resulting from fixing λ1 and λ2 in game G

P [λ1] MC resulting from fixing λ1 in MDP P

Outcomes

OutsM (sinit) outcomes of MC M starting in sinit

OutsP (sinit, λ1) outcomes of MDP P under strategy λ1

OutsG(sinit, λ1, λ2) outcomes of game G under strategies λ1 and λ2

OutsG(sinit, λi) outcomes of game G consistent with λi

Value Functions and Classical Objectives

f value function

f(π) value of play π

µ ∈ Q worst-case threshold

ν ∈ Q expected value threshold

ReachG(T ) reachability objective with target set T

BuchiG(T ) Büchi objective with target set T

ParityG parity objective

TP(ρ) total-payoff of prefix ρ

TP(π)/TP(π) infimum/supremum total-payoff of play π

MP(ρ) mean-payoff of prefix ρ

MP(π)/MP(π) infimum/supremum mean-payoff of play π

TST (π) truncated sum of weights up to first visit of T

EL(ρ) energy level of prefix ρ

TotalInfG(µ) inf. total-payoff objective for threshold µ

TotalSupG(µ) sup. total-payoff objective for threshold µ

MeanInfG(µ) inf. mean-payoff objective for threshold µ

MeanSupG(µ) sup. mean-payoff objective for threshold µ

ShortPathG(T, µ) shortest path obj. for target T and threshold µ

EnergyG(v0) energy objective for initial credit v0 ∈ N

Miscellaneous

∅ empty set

projAi projection on set Ai
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AttrPi, nG (A) attractor in n steps for Pi for states A ⊆ S
AttrPiG (A) attractor for Pi for states A ⊆ S
� LTL globally

♦ LTL eventually (or finally)

{0}k k-dimension zero vector

Even-parity self-covering trees

T = (Q,R) epSCT

Q set of nodes

ς, ϑ, χ, ν, ξ ∈ Q nodes

R ⊂ Q×Q set of edges

Θ: Q→ S × Zk labeling function

Θ(ς) = 〈t, u〉 node labeling

ς  ϑ path from node ς to node ϑ

Anc(ς) ancestors of node ς

EnAnc(ς) energy ancestors of node ς

oea(ς) oldest energy ancestor of node ς

d branching degree of the game

l depth of the tree

L width of the tree

D = (Q,R) directed acyclic graph (DAG)

merge(D) merge of DAG D

Synthesis in multi energy games

C bound on considered winning credits

CpreC controllable predecessor operator

Cpre∗C fixed point of operator CpreC

Window games

lmax maximal window size

GWG(v, lmax) good window objective (threshold v)

DirFixWMPG(v, lmax) direct fixed window mean-payoff objective

DirBndWMPG(v) direct bounded window mean-payoff objective
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FixWMPG(v, lmax) fixed window mean-payoff objective

BndWMPG(v) bounded window mean-payoff objective
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