# Controllers in Reactive Synthesis: A Strategic Perspective

Mickael Randour

F.R.S.-FNRS & UMONS - Université de Mons, Belgium

January 27, 2025

Formal Methods Reading Group, UMONS





Strategies = **formal blueprints** for real-world controllers.

Strategies = **formal blueprints** for real-world controllers.

#### Simpler is better:

- ▶ easier to understand,
- > cheaper to produce and maintain.

Strategies = **formal blueprints** for real-world controllers.

#### Simpler is better:

- > easier to understand.
- > cheaper to produce and maintain.

### Aim of this survey talk

Understanding how complex strategies need to be.

Strategies = **formal blueprints** for real-world controllers.

#### Simpler is better:

- ▶ easier to understand,
- > cheaper to produce and maintain.

### Aim of this survey talk

Understanding how complex strategies need to be.

But how to define complexity and how to measure it?

Strategies = **formal blueprints** for real-world controllers.

#### Simpler is better:

- > cheaper to produce and maintain.

### Aim of this survey talk

Understanding how complex strategies need to be.

But how to define complexity and how to measure it?

 $\hookrightarrow$  That is our topic of the today.

Yes, I lied, and I will lie even more. The results I will survey span numerous combinations of

- ▶ game models,
- > strategy models,
- ▷ objectives,

Yes, I lied, and I will lie even more. The results I will survey span numerous combinations of

- > game models,
- > strategy models,

There will be some hand-waving and approximations to keep the talk high level.

Yes, I lied, and I will lie even more. The results I will survey span numerous combinations of

- > strategy models,

There will be some hand-waving and approximations to keep the talk high level.

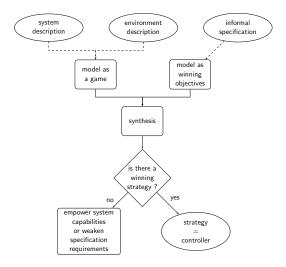
 $\hookrightarrow$  I will focus on recent work with marvelous co-authors.

- 1 Controller synthesis
- 2 Memory
- 3 Randomness
- 4 Beyond Mealy machines

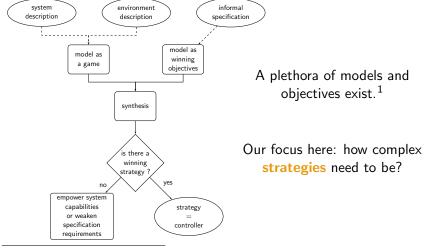
- 1 Controller synthesis
- 2 Memory
- 3 Randomness
- 4 Beyond Mealy machines

Randomness

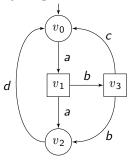
# Controller synthesis: a game-theoretic approach



# Controller synthesis: a game-theoretic approach



<sup>&</sup>lt;sup>1</sup>Randour, "Automated Synthesis of Reliable and Efficient Systems Through Game Theory: A Case Study", 2013; Clarke et al., Handbook of Model Checking, 2018; Fijalkow et al., Games on Graphs, 2023.

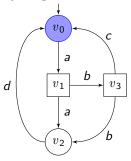


A two-player turn-based finite arena  $\mathcal{A} = (V_{\square}, V_{\square}, E)$  with no deadlock.

Color function  $c: E \to C$ 

 $\hookrightarrow$  Players move a pebble along the edges creating an infinite play.

 $\hookrightarrow$  Behavior of the system = sequence of colors.



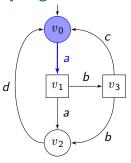
A two-player turn-based finite arena  $\mathcal{A} = (V_{\square}, V_{\square}, E)$  with no deadlock.

Color function  $c: E \to C$ 

 $\hookrightarrow$  Players move a pebble along the edges creating an infinite play.

 $\hookrightarrow$  Behavior of the system = sequence of colors.

#### Sample play:



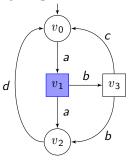
A two-player turn-based finite arena  $A = (V_{\bigcirc}, V_{\square}, E)$  with no deadlock.

**Color** function  $\mathfrak{c} \colon E \to C$ .

→ Players move a pebble along the edges creating an infinite play.

 $\hookrightarrow$  Behavior of the system = sequence of colors.

Sample play: a



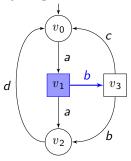
A two-player turn-based finite arena  $A = (V_{\bigcirc}, V_{\square}, E)$  with no deadlock.

**Color** function  $\mathfrak{c} \colon E \to C$ .

→ Players move a pebble along the edges creating an infinite play.

 $\hookrightarrow$  Behavior of the system = sequence of colors.

Sample play: a



A two-player turn-based finite arena  $\mathcal{A} = (V_{\square}, V_{\square}, E)$  with no deadlock.

Color function  $c: E \to C$ 

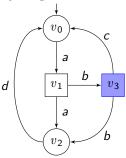
 $\hookrightarrow$  Players move a pebble along the edges creating an infinite play.

 $\hookrightarrow$  Behavior of the system = sequence of colors.

Sample play: ab

Controller synthesis

00000000



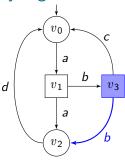
A two-player turn-based finite arena  $A = (V_{\bigcirc}, V_{\square}, E)$  with no deadlock.

**Color** function  $\mathfrak{c} \colon E \to C$ .

→ Players move a pebble along the edges creating an infinite play.

 $\hookrightarrow$  Behavior of the system = sequence of colors.

Sample play: ab



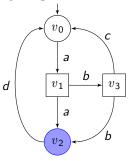
A two-player turn-based finite arena  $A = (V_{\bigcirc}, V_{\square}, E)$  with no deadlock.

**Color** function  $\mathfrak{c} \colon E \to C$ .

→ Players move a pebble along the edges creating an infinite play.

 $\hookrightarrow$  Behavior of the system = sequence of colors.

Sample play: abb



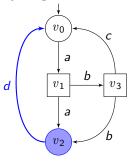
A two-player turn-based finite arena  $\mathcal{A} = (V_{\square}, V_{\square}, E)$  with no deadlock.

Color function  $c: E \to C$ 

 $\hookrightarrow$  Players move a pebble along the edges creating an infinite play.

 $\hookrightarrow$  Behavior of the system = sequence of colors.

Sample play: abb



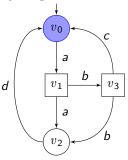
A two-player turn-based finite arena  $A = (V_{\bigcirc}, V_{\square}, E)$  with no deadlock.

Color function  $\mathfrak{c} \colon E \to C$ .

→ Players move a pebble along the edges creating an infinite play.

 $\hookrightarrow$  Behavior of the system = sequence of colors.

Sample play: abbd



A two-player turn-based finite arena  $A = (V_{\bigcirc}, V_{\square}, E)$  with no deadlock.

**Color** function  $\mathfrak{c} \colon E \to C$ .

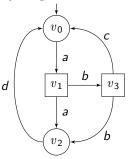
→ Players move a pebble along the edges creating an infinite play.

 $\hookrightarrow$  Behavior of the system = sequence of colors.

Sample play: abbd

Controller synthesis

00000000



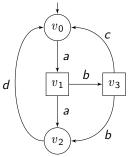
A two-player turn-based finite arena  $\mathcal{A} = (V_{\square}, V_{\square}, E)$  with no deadlock.

Color function  $c: E \to C$ 

 $\hookrightarrow$  Players move a pebble along the edges creating an infinite play.

 $\hookrightarrow$  Behavior of the system = sequence of colors.

Sample play:  $abbd \dots \in C^{\omega}$ 



A two-player turn-based finite arena  $\mathcal{A} = (V_{\square}, V_{\square}, E)$  with no deadlock.

Color function  $\mathfrak{c} \colon E \to C$ 

 $\hookrightarrow$  Players move a pebble along the edges creating an infinite play.

 $\hookrightarrow$  Behavior of the system = sequence of colors.

### Usual interpretation

 $\mathcal{P}_{\bigcirc}$  (the system to control) tries to satisfy its **specification** while  $\mathcal{P}_{\square}$  (the environment) tries to prevent it from doing so.

They are encoded as some kind of *objective* defined using colors. Three main flavors:

They are encoded as some kind of *objective* defined using colors. Three main flavors:

**1** A winning condition: a set of winning plays that  $\mathcal{P}_{\bigcirc}$  tries to realize. E.g., Reach $(t) = \{\pi = c_0c_1c_2... \mid t \in \pi\}$ , for  $t \in C$  a given color, a *reachability* objective.

They are encoded as some kind of *objective* defined using colors. Three main flavors:

- **1** A winning condition: a set of winning plays that  $\mathcal{P}_{\bigcirc}$  tries to realize. E.g., Reach $(t) = \{\pi = c_0c_1c_2... \mid t \in \pi\}$ , for  $t \in C$  a given color, a *reachability* objective.
- **2** A payoff function to optimize, assuming  $C \subset \mathbb{Q}$ . E.g., the discounted sum function, defined as  $DS(\pi) = \sum_{i=0}^{\infty} \gamma^i c_i$  for some discount factor  $\gamma \in ]0,1[$ .

They are encoded as some kind of *objective* defined using colors. Three main flavors:

- **1** A winning condition: a set of winning plays that  $\mathcal{P}_{\bigcirc}$  tries to realize. E.g., Reach $(t) = \{\pi = c_0 c_1 c_2 \dots \mid t \in \pi\}$ , for  $t \in C$  a given color, a *reachability* objective.
- 2 A payoff function to optimize, assuming  $C \subset \mathbb{Q}$ . E.g., the discounted sum function, defined as  $DS(\pi) = \sum_{i=0}^{\infty} \gamma^i c_i$  for some discount factor  $\gamma \in ]0,1[$ .
- A preference relation defines a total preorder over sequences of colors, thus generalizing both previous concepts.

# **Strategies**

Controller synthesis

000000000

Player  $\mathcal{P}_{\nabla}$  chooses outgoing edges following a **strategy** 

$$\sigma_{\nabla} \colon V^* V_{\nabla} \to V$$

consistent with the underlying graph.

# **Strategies**

Controller synthesis

00000000

Player  $\mathcal{P}_{\nabla}$  chooses outgoing edges following a **strategy** 

$$\sigma_{\nabla} \colon V^* V_{\nabla} \to V$$

consistent with the underlying graph.

 $\hookrightarrow$  We are interested in the complexity of optimal strategies.

# **Strategies**

Controller synthesis

000000000

Player  $\mathcal{P}_{\nabla}$  chooses outgoing edges following a strategy

$$\sigma_{\nabla} \colon V^* V_{\nabla} \to V$$

consistent with the underlying graph.

 $\hookrightarrow$  We are interested in the complexity of optimal strategies.

# Optimal strategies (using a preference relation □)

A strategy  $\sigma_{\bigcirc}$  of  $\mathcal{P}_{\bigcirc}$  is optimal if it guarantees (i.e., against an optimal adversary  $\mathcal{P}_{\square}$ ) a play at least as good as any other strategy  $\sigma'_{\bigcirc}$  with respect to  $\sqsubseteq$ .

# MDPs & stochastic games

### Why?

In many real scenarios, the environment is not fully antagonistic, but exhibits stochastic behaviors.

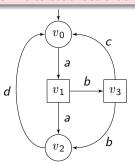
### MDPs & stochastic games

#### Why?

Controller synthesis

000000000

In many real scenarios, the environment is not fully antagonistic, but exhibits stochastic behaviors.



Two-player (deterministic) game.

$$V=V_{\bigcirc}\biguplus V_{\square}.$$

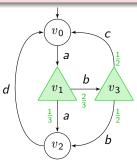
### MDPs & stochastic games

### Why?

Controller synthesis

000000000

In many real scenarios, the environment is not fully antagonistic, but exhibits stochastic behaviors.



Markov decision process.

$$V = V_{\bigcirc} \biguplus V_{\triangle}.$$

Either  $\mathcal{P}_{\bigcirc}$  aims to maximize

- $\triangleright \mathbb{P}^{\sigma \circ}[W]$  for some winning condition W,
- $\triangleright$  or  $\mathbb{E}^{\sigma} \circ [f]$  for some payoff function f.

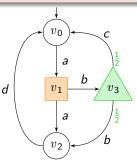
### MDPs & stochastic games

### Why?

Controller synthesis

000000000

In many real scenarios, the environment is not fully antagonistic, but exhibits stochastic behaviors.



Stochastic game.

$$V = V_{\bigcirc} \biguplus V_{\triangle} \biguplus V_{\square}.$$

Either  $\mathcal{P}_{\bigcirc}$  aims to maximize, against the adversary  $\mathcal{P}_{\Box}$ ,

- $\triangleright \mathbb{P}^{\sigma_{\bigcirc},\sigma_{\square}}[W]$  for some winning condition W,
- $\triangleright$  or  $\mathbb{E}^{\sigma_{\bigcirc},\sigma_{\square}}[f]$  for some payoff function f.

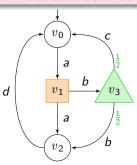
### MDPs & stochastic games

### Why?

Controller synthesis

000000000

In many real scenarios, the environment is not fully antagonistic, but exhibits stochastic behaviors.



### Stochastic game.

$$V = V_{\bigcirc} \biguplus V_{\triangle} \biguplus V_{\square}.$$

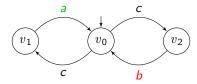
#### Actions

We often use actions instead of stochastic vertices.

### Multiple objectives

### Combining objectives

Complex objectives arise when combining simple objectives, and usually require more complex strategies to play optimally.

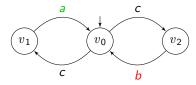


Seeing a and b infinitely often requires memory, but seeing only one does not (Büchi objective).

### Multiple objectives

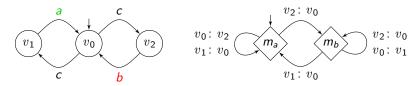
### Combining objectives

Complex objectives arise when combining simple objectives, and usually require more complex strategies to play optimally.



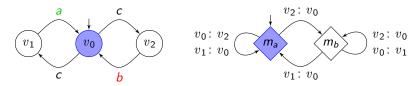
Seeing a and b infinitely often requires memory, but seeing only one does not (Büchi objective).

vectors not dominated by another.



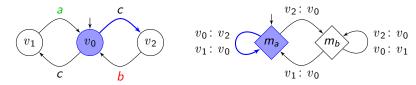
Mealy machine  $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$ :

- $\triangleright$  *M* is the set of *memory states*,
- $\triangleright$   $m_{\text{init}}$  is the *initial state*,
- $\triangleright \alpha_{\mathsf{nxt}} \colon \mathsf{M} \times \mathsf{V} \to \mathsf{V}$  is the *next-action function*,
- $\triangleright \alpha_{up} : M \times V \rightarrow M$  is the *update function*.



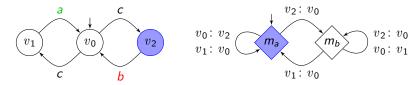
Mealy machine  $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$ :

- $\triangleright$  *M* is the set of *memory states*,
- $\triangleright$   $m_{\text{init}}$  is the *initial state*,
- $\triangleright \alpha_{\mathsf{nxt}} \colon \mathsf{M} \times \mathsf{V} \to \mathsf{V}$  is the *next-action function*,
- $\triangleright \alpha_{up} : M \times V \rightarrow M$  is the *update function*.



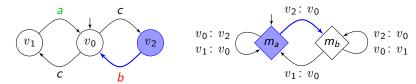
Mealy machine  $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$ :

- $\triangleright$  *M* is the set of *memory states*,
- $\triangleright$   $m_{\text{init}}$  is the *initial state*,
- $\triangleright \alpha_{\mathsf{nxt}} \colon M \times V \to V$  is the *next-action function*,
- $\triangleright \alpha_{up}: M \times V \rightarrow M$  is the *update function*.



Mealy machine  $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$ :

- $\triangleright$  *M* is the set of *memory states*,
- $\triangleright$   $m_{\text{init}}$  is the *initial state*,
- $\triangleright \alpha_{\mathsf{nxt}} \colon M \times V \to V$  is the *next-action function*,
- $\triangleright \alpha_{up} : M \times V \rightarrow M$  is the *update function*.



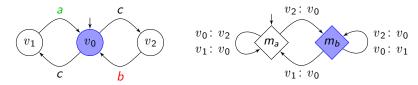
Mealy machine  $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$ :

- → M is the set of memory states,
- $\triangleright$   $m_{\text{init}}$  is the *initial state*,

Controller synthesis

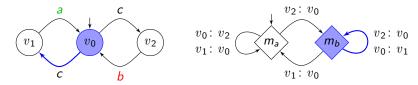
000000000

- $\triangleright \alpha_{\mathsf{nxt}} \colon \mathsf{M} \times \mathsf{V} \to \mathsf{V}$  is the *next-action function*,
- $\triangleright \alpha_{\sf up} : M \times V \to M$  is the *update function*.



Mealy machine  $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$ :

- $\triangleright$  *M* is the set of *memory states*,
- $\triangleright$   $m_{\text{init}}$  is the *initial state*,
- $\triangleright \alpha_{\mathsf{nxt}} \colon \mathsf{M} \times \mathsf{V} \to \mathsf{V}$  is the *next-action function*,
- $\triangleright \alpha_{up} : M \times V \rightarrow M$  is the *update function*.



Mealy machine  $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$ :

- $\triangleright$  *M* is the set of *memory states*,
- $\triangleright$   $m_{\text{init}}$  is the *initial state*,
- $\triangleright \alpha_{\mathsf{nxt}} \colon M \times V \to V$  is the *next-action function*,
- $\triangleright \alpha_{\sf up} \colon M \times V \to M$  is the *update function*.

Controller synthesis

000000000

## Classical representation of strategies: Mealy machines



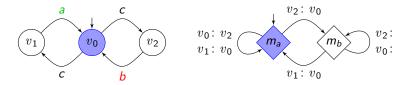
Mealy machine  $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$ :

- → M is the set of memory states,
- m<sub>init</sub> is the *initial state*,
- $\triangleright \alpha_{\mathsf{nxt}} : M \times V \to V$  is the *next-action function*,
- $\triangleright \alpha_{up}: M \times V \rightarrow M$  is the update function.



Mealy machine  $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$ :

- $\triangleright$  *M* is the set of *memory states*,
- $\triangleright$   $m_{\text{init}}$  is the *initial state*,
- $\triangleright \alpha_{\mathsf{nxt}} \colon \mathsf{M} \times \mathsf{V} \to \mathsf{V}$  is the *next-action function*,
- $\triangleright \alpha_{up}: M \times V \rightarrow M$  is the *update function*.



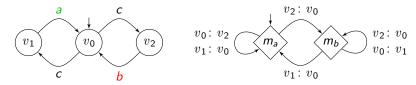
Mealy machine  $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$ :

- $\triangleright$  *M* is the set of *memory states*,
- $\triangleright$   $m_{\text{init}}$  is the *initial state*,
- $\triangleright \alpha_{\mathsf{nxt}} \colon M \times V \to V$  is the *next-action function*,
- $\triangleright \alpha_{\sf up} \colon M \times V \to M$  is the *update function*.

Controller synthesis

000000000

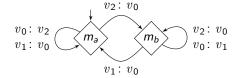
## Classical representation of strategies: Mealy machines



Mealy machine  $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$ :

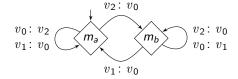
- → M is the set of memory states,
- m<sub>init</sub> is the *initial state*,
- $\triangleright \alpha_{\mathsf{nxt}} : M \times V \to V$  is the *next-action function*,
- $\triangleright \alpha_{up}: M \times V \rightarrow M$  is the update function.

### The ice cream conundrum



This Mealy machine uses **chaotic** (or general) memory: it looks at the actual vertices of the game to update its memory.

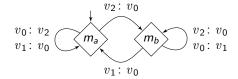
### The ice cream conundrum



This Mealy machine uses **chaotic** (or general) memory: it looks at the actual vertices of the game to update its memory.

Many other flavors exist: **chromatic** memory, with or without *ε*-**transitions**, with different types of **randomness**, etc.

### The ice cream conundrum



This Mealy machine uses **chaotic** (or general) memory: it looks at the actual vertices of the game to update its memory.

Many other flavors exist: **chromatic** memory, with or without ε-transitions, with different types of **randomness**, etc.

 $\hookrightarrow$  We will discuss some of these.

- 1 Controller synthesis
- 2 Memory
- 3 Randomness
- 4 Beyond Mealy machines

## Some amazing co-authors









Section mostly based on joint work with Patricia Bouyer, Stéphane Le Roux, Youssouf Oualhadj, and Pierre Vandenhove.<sup>2</sup>

<sup>&</sup>lt;sup>2</sup>Bouyer, Le Roux, et al., "Games Where You Can Play Optimally with Arena-Independent Finite Memory", 2022; Bouyer, Oualhadj, et al., "Arena-Independent Finite-Memory Determinacy in Stochastic Games", 2023; Bouyer, Randour, and Vandenhove, "Characterizing Omega-Regularity through Finite-Memory Determinacy of Games on Infinite Graphs", 2023.

# Memoryless strategies

Functions  $\sigma_{\nabla} \colon V_{\nabla} \to V$ .

- □ Equivalently, Mealy machines with one state.
- > Arguably, the simplest kind of strategies.

## Memoryless strategies

Functions  $\sigma_{\nabla} \colon V_{\nabla} \to V$ .

- > Arguably, the simplest kind of strategies.
- Sufficient to play optimally for most single objectives in (stochastic) games: reachability, parity, mean-payoff, discounted sum, etc.

## Starting point of our journey: deterministic games

#### Gimbert and Zielonka's characterization<sup>3</sup>

Memoryless strategies suffice (for both players) for a preference relation  $\Box$  iff it is monotone and selective.

<sup>&</sup>lt;sup>3</sup>Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005,

## Starting point of our journey: deterministic games

#### Gimbert and Zielonka's characterization<sup>3</sup>

Memoryless strategies suffice (for both players) for a preference relation  $\square$  iff it is **monotone** and **selective**.

### Corollary: one-to-two-player lift

If  $\sqsubseteq$  is such that

- lacktriangledown in all  $\mathcal{P}_{\bigcirc}$ -arenas,  $\mathcal{P}_{\bigcirc}$  has optimal memoryless strategies,

⇒ Extremely useful as analyzing one-player games (i.e., graphs) is much easier.

<sup>&</sup>lt;sup>3</sup>Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

# Handling finite-memory strategies (1/3)

#### Why?

# Handling finite-memory strategies (1/3)

#### Why?

- - → One would hope for an equivalent of Gimbert and Zielonka's result for finite memory.

# Handling finite-memory strategies (1/3)

#### Why?

- - One would hope for an equivalent of Gimbert and Zielonka's result for finite memory.

Unfortunately, it does not hold.

## Handling finite-memory strategies (2/3)

Let  $C \subseteq \mathbb{Z}$  and the winning condition for  $\mathcal{P}_{\bigcirc}$  be

$$\overline{TP}(\pi) = \infty \quad \lor \quad \exists^{\infty} n \in \mathbb{N}, \ \sum_{i=0}^{n} c_i = 0$$

Randomness

## Handling finite-memory strategies (2/3)

Let  $C \subseteq \mathbb{Z}$  and the winning condition for  $\mathcal{P}_{\bigcirc}$  be

$$\overline{TP}(\pi) = \infty \quad \lor \quad \exists^{\infty} n \in \mathbb{N}, \sum_{i=0}^{n} c_i = 0$$

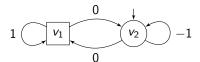
Both one-player variants are finite-memory determined.

## Handling finite-memory strategies (2/3)

Let  $C \subseteq \mathbb{Z}$  and the winning condition for  $\mathcal{P}_{\bigcirc}$  be

$$\overline{TP}(\pi) = \infty \quad \lor \quad \exists^{\infty} n \in \mathbb{N}, \sum_{i=0}^{n} c_i = 0$$

Both one-player variants are finite-memory determined.



But the two-player one is not!  $\implies \mathcal{P}_{\bigcirc}$  needs infinite memory to win.

# Handling finite-memory strategies (3/3)

#### A new frontier

We focus on arena-independent chromatic memory structures.

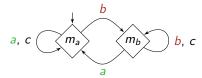
Randomness

## Handling finite-memory strategies (3/3)

#### A new frontier

We focus on arena-independent chromatic memory structures.

Example for  $C = \{a, b, c\}$  and objective  $B\ddot{u}chi(a) \cap B\ddot{u}chi(b)$ .

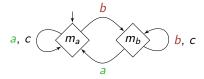


## Handling finite-memory strategies (3/3)

#### A new frontier

We focus on arena-independent chromatic memory structures.

Example for  $C = \{a, b, c\}$  and objective  $B\ddot{u}chi(a) \cap B\ddot{u}chi(b)$ .



This memory structure suffices in all arenas, i.e., it is always possible to find a suitable  $\alpha_{nxt}$  to build an optimal Mealy machine.

# Handling finite-memory strategies (3/3)

#### A new frontier

We focus on arena-independent chromatic memory structures.

#### Our characterization<sup>4</sup>

We obtain an equivalent to Gimbert and Zielonka's for finite memory:

- a characterization through the concepts of M-monotony and M-selectivity,
- 2 a one-to-two-player lift.

<sup>&</sup>lt;sup>4</sup>Bouyer, Le Roux, et al., "Games Where You Can Play Optimally with Arena-Independent Finite Memory", 2022

## Extension to stochastic games

We lift<sup>5</sup> this result to pure arena-independent finite-memory strategies in stochastic games:

- characterization based on generalizations of M-monotony and M-selectivity,
- 2 one-to-two-player lift, from MDPs to stochastic games.

<sup>&</sup>lt;sup>5</sup>Bouyer, Oualhadj, et al., "Arena-Independent Finite-Memory Determinacy in Stochastic Games", 2023.

# Extension to infinite (deterministic) arenas (1/2)

We consider arenas of arbitrary cardinality and allow infinite branching.

#### Observation

Memory requirements can be **higher in infinite arenas**: e.g., mean-payoff objectives require infinite memory.

## Extension to infinite (deterministic) arenas (1/2)

We consider arenas of arbitrary cardinality and allow infinite branching.

#### Observation

Memory requirements can be **higher in infinite arenas**: e.g., mean-payoff objectives require infinite memory.

### The case of $\omega$ -regular objectives<sup>6</sup>

If a victory condition W is  $\omega$ -regular, then it admits finite-memory optimal strategies in all (infinite) arenas.

<sup>&</sup>lt;sup>6</sup>Mostowski, "Regular expressions for infinite trees and a standard form of automata", 1985; W. Zielonka,

<sup>&</sup>quot;Infinite games on finitely coloured graphs with applications to automata on infinite trees", 1998.

# Extension to infinite (deterministic) arenas (2/2)

#### The converse<sup>7</sup>

If a **chromatic finite-memory** structure  $\mathcal{M}$  suffices for W in all infinite arenas, then W is  $\omega$ -regular.

 $\hookrightarrow$  We build a parity automaton for W, based on  $\mathcal{M}$  and  $\mathcal{S}_W$ , the *prefix-classifier* of W (recognizing its Myhill-Nerode classes).

<sup>&</sup>lt;sup>7</sup>Bouyer, Randour, and Vandenhove, "Characterizing Omega-Regularity through Finite-Memory Determinacy of Games on Infinite Graphs". 2023.

# Extension to infinite (deterministic) arenas (2/2)

#### The converse<sup>7</sup>

If a chromatic finite-memory structure  $\mathcal M$  suffices for W in all infinite arenas, then W is  $\omega$ -regular.

 $\hookrightarrow$  We build a parity automaton for W, based on  $\mathcal{M}$  and  $\mathcal{S}_W$ , the *prefix-classifier* of W (recognizing its Myhill-Nerode classes).

#### Corollaries

- **1** Game-theoretical characterization of  $\omega$ -regularity.
- 2 One-to-two-player lift for infinite arenas.

<sup>&</sup>lt;sup>7</sup>Bouyer, Randour, and Vandenhove, "Characterizing Omega-Regularity through Finite-Memory Determinacy of Games on Infinite Graphs". 2023.

#### Other criteria and characterizations

There is a plethora of results related to memory (models vary). Non-exhaustive list:

- ▶ tight memory bounds for sub-classes of objectives, 9
- one-to-multi-objective lift,<sup>11</sup>

### → Find more about chromatic memory in our survey.<sup>13</sup>

<sup>&</sup>lt;sup>8</sup>Casares and Ohlmann, "Characterising Memory in Infinite Games", 2023.

 $<sup>^9</sup>$ Bouyer, Casares, et al., "Half-Positional Objectives Recognized by Deterministic Büchi Automata", 2024; Bouyer, Fijalkow, et al., "How to Play Optimally for Regular Objectives?", 2023; Casares and Ohlmann, "Positional ω-regular languages", 2024.

<sup>&</sup>lt;sup>10</sup>Aminof and Rubin, "First-cycle games", 2017.

 $<sup>^{11}</sup>$ Le Roux, Pauly, and Randour, "Extending Finite-Memory Determinacy by Boolean Combination of Winning Conditions", 2018.

 $<sup>^{12}</sup>$ Le Roux and Pauly, "Extending Finite Memory Determinacy to Multiplayer Games", 2016.

<sup>&</sup>lt;sup>13</sup>Bouyer, Randour, and Vandenhove, "The True Colors of Memory: A Tour of Chromatic-Memory Strategies in Zero-Sum Games on Graphs (Invited Talk)", 2022.

- 1 Controller synthesis
- 2 Memory
- 3 Randomness
- 4 Beyond Mealy machines

## The amazing Mr. Main



Section mostly based on (ongoing) joint work with James C. A. Main. 14

 $<sup>^{14}</sup>$ Main and Randour, "Different Strokes in Randomised Strategies: Revisiting Kuhn's Theorem Under Finite-Memory Assumptions", 2024.

# Introducing randomness in strategies (1/2)

A pure strategy is a function  $\sigma_{\nabla} \colon V^*V_{\nabla} \to V$ .

# Introducing randomness in strategies (1/2)

A pure strategy is a function  $\sigma_{\nabla} : V^*V_{\nabla} \to V$ .

We may need randomness to deal with, e.g.,

multiple objectives,

Controller synthesis

- concurrent games,
- imperfect information.

$$a \underbrace{v_1} \underbrace{c} \underbrace{v_0} \underbrace{c} \underbrace{v_2} \underbrace{b}$$

Objective:  $\mathbb{P}^{\sigma}$  [Reach(a)]  $\geq \frac{1}{2} \wedge \mathbb{P}^{\sigma}$  [Reach(b)]  $\geq \frac{1}{2}$ 

 $\hookrightarrow$  Achievable by tossing a coin in  $v_0$ .

Randomness

# Introducing randomness in strategies (2/2)

Several ways of randomizing  $\sigma_{\nabla} \colon V^*V_{\nabla} \to V$ :

# Introducing randomness in strategies (2/2)

Several ways of randomizing  $\sigma_{\nabla} \colon V^* V_{\nabla} \to V$ :

#### Behavioral strategies

$$\sigma_{\nabla} \colon V^* V_{\nabla} \to \mathcal{D}(V)$$

Randomness

0000000000

Several ways of randomizing  $\sigma_{\nabla} : V^*V_{\nabla} \to V$ :

Behavioral strategies

Controller synthesis

$$\sigma_{\nabla} \colon V^* V_{\nabla} \to \mathcal{D}(V)$$

Mixed strategies

$$\mathcal{D}(\sigma_{\nabla} \colon V^*V_{\nabla} \to V)$$

Randomness

0000000000

# Introducing randomness in strategies (2/2)

Several ways of randomizing  $\sigma_{\nabla}: V^*V_{\nabla} \to V$ :

Behavioral strategies

Controller synthesis

Mixed strategies  $\sigma_{\nabla} \colon V^* V_{\nabla} \to \mathcal{D}(V)$  $\mathcal{D}(\sigma_{\nabla} \colon V^* V_{\nabla} \to V)$ 

**General strategies** 

 $\mathcal{D}(\sigma_{\nabla} \colon V^*V_{\nabla} \to \mathcal{D}(V))$ 

## Introducing randomness in strategies (2/2)

Several ways of randomizing  $\sigma_{\nabla}: V^*V_{\nabla} \to V$ :

Behavioral strategies

 $\sigma_{\nabla} \colon V^* V_{\nabla} \to \mathcal{D}(V)$ 

Mixed strategies

 $\mathcal{D}(\sigma_{\nabla}\colon V^*V_{\nabla}\to V)$ 

**General strategies** 

Randomness

 $\mathcal{D}(\sigma_{\nabla} \colon V^*V_{\nabla} \to \mathcal{D}(V))$ 

#### Kuhn's theorem 15

Controller synthesis

All three classes are equivalent in games of *perfect recall*.

→ Requires access to infinite memory and infinite support for distributions.

<sup>&</sup>lt;sup>15</sup>Aumann, "Mixed and Behavior Strategies in Infinite Extensive Games", 1964.

## What about finite-memory strategies?

Mealy machine  $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$ :

- $\triangleright$  *M* is the set of memory states,
- $\triangleright$   $m_{\text{init}}$  is the initial state,
- $\triangleright \alpha_{\mathsf{nxt}} \colon M \times V \to V$  is the next-action function,
- $\triangleright \alpha_{\sf up} \colon M \times V \to M$  is the update function.

## What about finite-memory strategies?

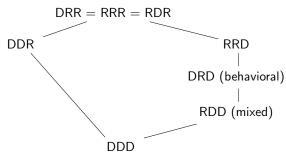
#### Mealy machine $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$ :

- $\triangleright$  *M* is the set of memory states,
- $\triangleright$   $m_{\text{init}}$  is the initial state,
- $\triangleright \alpha_{\mathsf{nxt}} \colon M \times V \to V$  is the next-action function,
- $\triangleright \ \alpha_{\sf up} \colon M \times V \to M$  is the update function.

### **Stochastic Mealy machine** $\mathcal{M} = \{M, \mu_{\mathsf{init}}, \alpha_{\mathsf{nxt}}, \alpha_{\mathsf{up}}\}$ :

- $\triangleright$  *M* is the set of memory states,
- $\triangleright \mu_{\mathsf{init}} \in \mathcal{D}(M)$  is the initial distribution,
- $hd \ \alpha_{\mathsf{nxt}} \colon M \times V \to \mathcal{D}(V)$  is the next-action function,
- ho  $\alpha_{\sf up} \colon M \times V \to \mathcal{D}(M)$  is the update function.
- ⇒ Three ways to add randomness: initialization, outputs, and updates.

# Taxonomy $^{16}$ (1/2)



Classes XYZ where X, Y, Z  $\in$  {D, R} where D stands for deterministic and R for random, and

- X characterizes the initialization,
- Y characterizes the next-action function,
- Z characterizes the update function.

<sup>&</sup>lt;sup>16</sup>Main and Randour, "Different Strokes in Randomised Strategies: Revisiting Kuhn's Theorem Under Finite-Memory Assumptions", 2024.

# Taxonomy (2/2)

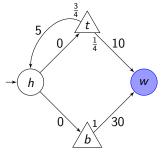
This taxonomy holds from one-player deterministic games (no collapse) up to concurrent partial-information multi-player games (equivalences hold).

# Taxonomy (2/2)

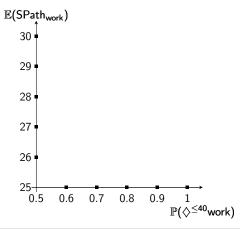
This taxonomy holds from one-player deterministic games (no collapse) up to concurrent partial-information multi-player games (equivalences hold).

We consider two goals:

- reaching work under 40 minutes with high probability;
- minimizing the expectancy of the time to reach work.

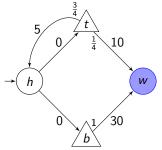


From *home*, take the *train* or *bike* to reach *work*.

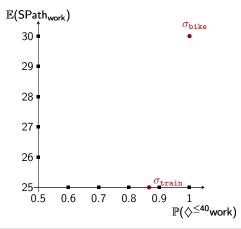


We consider two goals:

- reaching work under 40 minutes with high probability;
- minimizing the expectancy of the time to reach work.

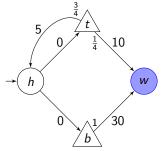


From *home*, take the *train* or *bike* to reach *work*.

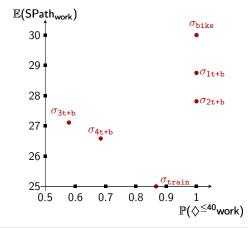


We consider two goals:

- reaching work under 40 minutes with high probability;
- minimizing the expectancy of the time to reach work.

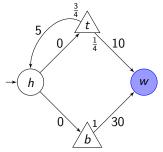


From *home*, take the *train* or *bike* to reach *work*.

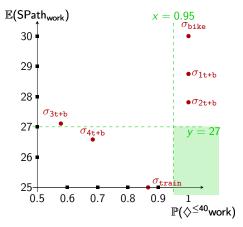


We consider two goals:

- reaching work under 40 minutes with high probability;
- minimizing the expectancy of the time to reach work.

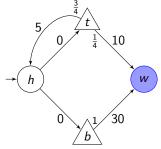


From *home*, take the *train* or *bike* to reach *work*.

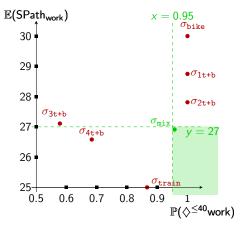


We consider two goals:

- reaching work under 40 minutes with high probability;
- minimizing the expectancy of the time to reach work.

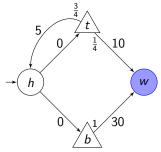


From *home*, take the *train* or *bike* to reach *work*.

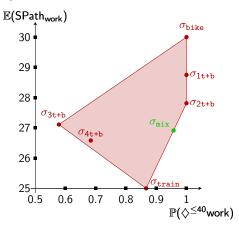


We consider two goals:

- reaching work under 40 minutes with high probability;
- minimizing the expectancy of the time to reach work.



From *home*, take the *train* or *bike* to reach *work*.



We are interested in the structure of this payoff set.

We are interested in the structure of this payoff set.

#### Our result (WiP)

For good payoff functions ( $\sim$  expectancy is well-defined),

- the set of achievable payoffs coincide with the convex hull of pure payoffs;
- 2 we can approximate *any* strategy  $\varepsilon$ -closely by **mixing** a bounded number of *pure* strategies.

We are interested in the structure of this payoff set.

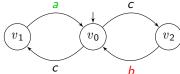
#### Our result (WiP)

For good payoff functions ( $\sim$  expectancy is well-defined),

- the set of achievable payoffs coincide with the convex hull of pure payoffs;
- **2** we can approximate *any* strategy  $\varepsilon$ -closely by **mixing** a bounded number of *pure* strategies.
- ⇒ RDD-randomization is sufficient in most multi-objective MDPs.

## Trading memory for randomness

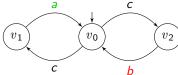
Recall this generalized Büchi game asking to see *a* and *b* infinitely often:



We need (a two-state) memory to win it with *pure* strategies.

## Trading memory for randomness

Recall this generalized Büchi game asking to see *a* and *b* infinitely often:

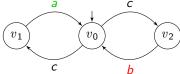


We need (a two-state) memory to win it with *pure* strategies.

But a (behavioral) randomized memoryless strategy suffices to win with probability one: playing  $v_1$  and  $v_2$  with non-zero probability ensures it.

## Trading memory for randomness

Recall this generalized Büchi game asking to see *a* and *b* infinitely often:



We need (a two-state) memory to win it with *pure* strategies.

But a (behavioral) randomized memoryless strategy suffices to win with probability one: playing  $v_1$  and  $v_2$  with non-zero probability ensures it.

→ Memory can be traded for randomness for some classes of games/objectives.<sup>17</sup>

<sup>&</sup>lt;sup>17</sup>Chatterjee, de Alfaro, and Henzinger, "Trading Memory for Randomness", 2004; Chatterjee, Randour, and Raskin, "Strategy synthesis for multi-dimensional quantitative objectives", 2014.

- 1 Controller synthesis
- 2 Memory
- 3 Randomness
- 4 Beyond Mealy machines

#### Leitmotiv

Simpler strategies are better (for controller synthesis).

#### Leitmotiv

Simpler strategies are better (for controller synthesis).

But what is simple?

#### Leitmotiv

Simpler strategies are better (for controller synthesis).

But what is simple?

Usual answer: small memory, no randomness.

#### Leitmotiv

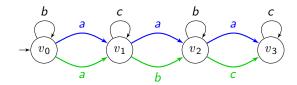
Simpler strategies are better (for controller synthesis).

But what is simple?

Usual answer: small memory, no randomness.

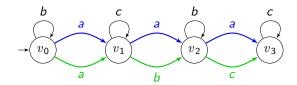
 $\hookrightarrow$  Let us question that.

We want to reach  $v_3$ .



Intuitively, the blue strategy seems simpler than the green one.

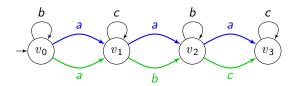
We want to reach  $v_3$ .



Intuitively, the blue strategy seems simpler than the green one.

> Yet both are represented as a trivial Mealy machine with a single memory state.

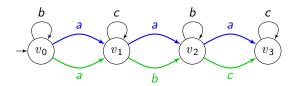
We want to reach  $v_3$ .



Intuitively, the blue strategy seems simpler than the green one.

- > Yet both are represented as a trivial Mealy machine with a single memory state.
- overlooked (basically a huge table).

We want to reach  $v_3$ .

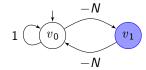


Intuitively, the blue strategy seems simpler than the green one.

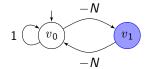
- Yet both are represented as a trivial Mealy machine with a single memory state.
- The representation of the next-action function is mostly overlooked (basically a huge table).
  - → Memoryless strategies can already be too large to represent in practice!

Controller synthesis

Multi-objectives games involving payoffs often require exponential **memory**. E.g., energy-Büchi objective with  $N \in \mathbb{N}$ .

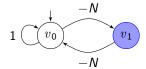


Multi-objectives games involving payoffs often require **exponential memory**. E.g., energy-Büchi objective with  $N \in \mathbb{N}$ .



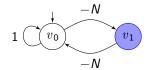
▶ We need a pseudo-polynomial Mealy machine because it lacks structure.

Multi-objectives games involving payoffs often require exponential **memory**. E.g., energy-Büchi objective with  $N \in \mathbb{N}$ .



- ▶ We need a pseudo-polynomial Mealy machine because it lacks structure.
- $\hookrightarrow$  Polynomial representation if we allow the use of counters.

Multi-objectives games involving payoffs often require exponential **memory**. E.g., energy-Büchi objective with  $N \in \mathbb{N}$ .

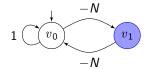


- ▶ We need a pseudo-polynomial Mealy machine because it lacks structure.
- $\hookrightarrow$  Polynomial representation if we allow the use of counters.

#### Hot take

We should explore novel notions of simplicity, and consider alternative representations of strategies/controllers.

Multi-objectives games involving payoffs often require exponential **memory**. E.g., energy-Büchi objective with  $N \in \mathbb{N}$ .



- ▶ We need a pseudo-polynomial Mealy machine because it lacks structure.
- $\hookrightarrow$  Polynomial representation if we allow the use of counters.

#### Hot take

We should explore novel notions of simplicity, and consider alternative representations of strategies/controllers.

 $\hookrightarrow$  We quickly survey a few ones in the next slides.

# Structurally-enriched Mealy machines

#### Idea:

- □ Augment Mealy machines with data structures: e.g., counters.<sup>18</sup>
- ▷ Avoid "flattening" structural information about the strategy: better understandability and closer to actual controllers.
- - ⇒ Changes our way of thinking which strategies are complex or not.

<sup>&</sup>lt;sup>18</sup>Blahoudek et al., "Qualitative Controller Synthesis for Consumption Markov Decision Processes", 2020.

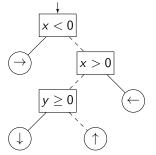
## Decision trees

- $\triangleright$  Structured state-space (e.g.,  $\subset \mathbb{Z}^n$ ) and action-space.
- ▶ Learn a (possibly approximative) decision tree from a given memoryless strategy.
- ▶ More understandable and compact than huge action tables.
- ▶ More complex tests may reduce size but hinder readability.

## Decision trees

- $\triangleright$  Structured state-space (e.g.,  $\subset \mathbb{Z}^n$ ) and action-space.
- ▶ Learn a (possibly approximative) decision tree from a given memoryless strategy.
- ▶ More understandable and compact than huge action tables.
- ▶ More complex tests may reduce size but hinder readability.

Toy example: trying to reach the center (0,0) of a 2D-grid.



instead of

| X  | y | action        |
|----|---|---------------|
| 0  | 1 | <b>+</b>      |
| 0  | 2 | <b>+</b>      |
|    |   | <b>+</b>      |
| -1 | 0 | $\rightarrow$ |
| -1 | 1 | $\rightarrow$ |
|    |   |               |

## Decision trees

- $\triangleright$  Structured state-space (e.g.,  $\subset \mathbb{Z}^n$ ) and action-space.
- ▶ Learn a (possibly approximative) decision tree from a given memoryless strategy.
- ▶ More understandable and compact than huge action tables.
- ▶ More complex tests may reduce size but hinder readability.

Works well in practice... <sup>19</sup>

... starting from a given memoryless strategy.

 $<sup>^{19}</sup>$ Brazdil, Chatterjee, Chmelik, et al., "Counterexample Explanation by Learning Small Strategies in Markov Decision Processes", 2015; Brazdil, Chatterjee, Kretinsky, et al., "Strategy Representation by Decision Trees in Reactive Synthesis", 2018.

## Other alternatives

#### Programmatic representations.

- Strongly linked to the input format of the problem (e.g., PRISM code<sup>20</sup>), hard to generalize.

## Models inspired by Turing machines.

- Powerful but hard to work with.
- → Tentative notion of decision speed.<sup>21</sup>

#### Neural networks.

- ▶ Prevalent in RL.
- ▶ Hard to understand and verify.
- ▶ Can be coupled with finite-state-machine abstractions. <sup>22</sup>

<sup>&</sup>lt;sup>22</sup>Shabadi, Fijalkow, and Matricon, "Theoretical foundations for programmatic reinforcement learning", 2024.

 $<sup>^{22}</sup>$ Gelderie, "Strategy machines: representation and complexity of strategies in infinite games", 2014.

<sup>&</sup>lt;sup>22</sup>Carr, Jansen, and Topcu, "Verifiable RNN-Based Policies for POMDPs Under Temporal Logic Constraints", 2020.

## Focus

Complexity of strategies in controller synthesis.

#### Focus

Complexity of strategies in controller synthesis.

Mealy machines are a powerful tool from a theoretical standpoint.

#### Focus

Complexity of strategies in controller synthesis.

Mealy machines are a powerful tool from a theoretical standpoint.

#### Focus

Complexity of strategies in controller synthesis.

Mealy machines are a powerful tool from a theoretical standpoint.

→ Many questions are still open!

Strategy complexity  $\neq$  representation complexity.

#### Focus

Complexity of strategies in controller synthesis.

Mealy machines are a powerful tool from a theoretical standpoint.

→ Many questions are still open!

Strategy complexity  $\neq$  representation complexity.

## Take-home message

We need a proper theory of complexity, and a toolbox of different representations.

**→** Ongoing project ControlleRS.

# Thank you! Any question?