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Aim of this talk

1 Overview of the situation for (multi) MP and TP games

� No P algorithm known in one dimension
� In multi dimensions, MP is coNP-complete
� First contribution: TP is undecidable in multi dimensions
� No timing guarantee

2 Introduction of window objectives
� Conservative approximation of MP/TP
� Break the complexity barriers
� Specifies timing requirements
� Algorithms, complexity and memory requirements
� Several flavors of the objective
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MP and TP games

2 2

5

−1 7
−4

Then, (2, 5, 2)ω

G = (S1,S2,E ,w)

S = S1 ∪ S2, S1 ∩ S2 = ∅,E ⊆ S × S ,
w : E → Z
P1 states =

P2 states =

Plays, prefixes, pure strategies.
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MP and TP games

2 2

5

−1 7
−4

Then, (2, 5, 2)ω

� TP (MP) threshold problem

Given v ∈ Q and sinit ∈ S ,

∃?λ1 ∈ Λ1 s.t. ∀λ2 ∈ Λ2,

TP(OutcomeG (sinit, λ1, λ2)) ≥ v
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Known results

one-dimension k-dimension

complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

MP / MP NP ∩ coNP mem-less coNP-c. / NP ∩ coNP infinite mem-less

TP / TP NP ∩ coNP mem-less ?? ?? ??

� Long tradition of study. Non-exhaustive selection:
[EM79, ZP96, Jur98, GZ04, GS09, CDHR10, VR11, CRR12]

� k-dimension: weights = integer vectors

� No known polynomial time algorithm for one-dimension

� No result on multi-dimension total-payoff
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Multi-dimension TP games are undecidable

Theorem

The threshold problem for infimum and supremum total-payoff
objectives is undecidable in multi-dimension games, for five
dimensions.

� Reduction from the halting problem for 2CMs [Min61]
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Two-counter machines

Finite set of instructions

Two counters C1 and C2 taking values (v1, v2) ∈ N2

Instructions:

� Increment
Ci + +

� Decrement
Ci −−

� Zero test and branch accordingly

If Ci == 0 do this else do that

W.l.o.g. if the machine stops, it stops with both counters to
zero
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Encoding a 2CM in a 5-dim. TP game

� TP objective (inf or sup) of threshold (0, 0, 0, 0, 0)

� P1 must simulate faithfully

� P2 retaliates if P1 cheats

� At the end, P1 wins the TP game iff the 2CM stops

Key idea: after m steps, the TP has value (v1,−v1, v2,−v2,−m)
iff the 2CM counters have value (v1, v2)

Looking at MP and TP through Windows Chatterjee, Doyen, Randour, Raskin 10 / 44
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Instructions

Increment C1

(1,−1, 0, 0,−1)

Decrement C1

(−1, 1, 0, 0,−1)
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Instructions

Checking counter C1 is non-negative

(0, 1, 1, 1, 1)

� If P1 cheats, he is doomed!

� Otherwise, P2 has no interest in retaliating.
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Instructions

Checking a zero test on C1

(1, 0, 1, 1, 1)

� If P1 cheats, he is doomed!

� Otherwise, P2 has no interest in retaliating.
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Halting

If the 2CM halts (with counters to zero w.l.o.g.)

(0, 0, 0, 0, 1)

� Thanks to the fifth dim., P1 wins only if the machine halts.
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The case is closed

one-dimension k-dimension

complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

MP / MP NP ∩ coNP mem-less coNP-c. / NP ∩ coNP infinite mem-less

TP / TP NP ∩ coNP mem-less Undec. - -
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1 Mean-Payoff and Total-Payoff Games
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Motivations

Classical MP and TP objectives have some drawbacks
� Complexity issues

◦ P membership for the one-dim. case is a long-standing open
problem

◦ TP undecidable in k-dim.

� Infimum vs. supremum
� no timing guarantee: the “good behavior” occurs at the

limit. . .
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Window objectives: key idea

Window of fixed size sliding along a play
; defines a local finite horizon

Objective: see a local MP ≥ 0 before hitting the end of the
window

; needs to be verified at every step

� Conservative approximation of MP/TP

� Intuition: local deviations from the threshold must be
compensated in a parametrized # of steps

� Variety of results and algorithms

Looking at MP and TP through Windows Chatterjee, Doyen, Randour, Raskin 18 / 44
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Illustration: WMP, threshold zero, maximal window = 4

Sum

Time
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Multiple variants

Given lmax ∈ N0, good window GW(lmax) asks for a positive
sum in at most lmax steps (one window, from the first state)

Direct Fixed Window : DFW(lmax) ≡ �GW(lmax)

Fixed Window : FW(lmax) ≡ ♦DFW(lmax)

Direct Bounded Window : DBW ≡ ∃ lmax, DFW(lmax)

Bounded Window : BW ≡ ♦DBW ≡ ∃ lmax, FW(lmax)

� Nice properties: monotonicity in lmax, prefix-independence

� A window closes when the sum becomes positive

� A window is open if not yet closed

Looking at MP and TP through Windows Chatterjee, Doyen, Randour, Raskin 20 / 44
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Example 1

s1 s2 s3 s4
1 −1

−1

1

MP is satisfied

� the cycle is non-negative

FW(2) is satisfied

� thanks to prefix-independence

DBW is not

� the window opened in s2 never closes

Looking at MP and TP through Windows Chatterjee, Doyen, Randour, Raskin 21 / 44
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Example 2

s1 s2 0

−1

1

MP is satisfied
� all simple cycles are non-negative

but none of the window objectives is
� P2 can force opening windows and delay their closing for as

long as he wants (but not forever due to prefix-independence)

BW vs. MP

BW asks for timing guarantees which cannot be enforced here

Observe that P2 needs infinite memory
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Conservative approximation of MP (one-dim.)

The following are true

Any window obj. ⇒ BW ⇒ MP ≥ 0
BW ⇐ MP > 0

Looking at MP and TP through Windows Chatterjee, Doyen, Randour, Raskin 23 / 44
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Results overview

one-dimension k-dimension

complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

MP / MP NP ∩ coNP mem-less coNP-c. / NP ∩ coNP infinite mem-less

TP / TP NP ∩ coNP mem-less undec. - -

WMP: fixed
P-c.

mem. req.

≤ linear(|S | · lmax)

PSPACE-h.

polynomial window EXP-easy
exponential

WMP: fixed
P(|S |,V , lmax) EXP-c.

arbitrary window

WMP: bounded
NP ∩ coNP mem-less infinite NPR-h. - -

window problem

� |S | the # of states, V the length of the binary encoding of
weights, and lmax the window size.

Looking at MP and TP through Windows Chatterjee, Doyen, Randour, Raskin 24 / 44
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PSPACE-h.

polynomial window EXP-easy
exponential

WMP: fixed
P(|S |,V , lmax) EXP-c.

arbitrary window

WMP: bounded
NP ∩ coNP mem-less infinite NPR-h. - -

window problem

� |S | the # of states, V the length of the binary encoding of
weights, and lmax the window size.

� For one-dim. games with poly. windows, we are in P

� For multi-dim. games with fixed windows, we are decidable

� Window obj. provide timing guarantees
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Results overview

one-dimension k-dimension

complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

MP / MP NP ∩ coNP mem-less coNP-c. / NP ∩ coNP infinite mem-less

TP / TP NP ∩ coNP mem-less undec. - -

WMP: fixed
P-c.

mem. req.

≤ linear(|S | · lmax)

PSPACE-h.

polynomial window EXP-easy
exponential

WMP: fixed
P(|S |,V , lmax) EXP-c. (1/2)

arbitrary window

WMP: bounded
NP ∩ coNP mem-less infinite NPR-h. - -

window problem

� |S | the # of states, V the length of the binary encoding of
weights, and lmax the window size.

� No time to discuss everything. Focus.
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1 Mean-Payoff and Total-Payoff Games

2 Total-Payoff Games in Multi Dimensions

3 Window Objectives

4 One-Dimension Fixed Window Problem

5 Multi-Dimension Fixed Window Problem

6 Multi-Dimension Bounded Window Problem

7 Conclusion
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High level sketch: top-down approach

FW(lmax) ≡ ♦DFW(lmax)

� Assume we can compute DFW(lmax),

� Compute attractor, declare winning and recurse on subgame.

G

SubgameDFW(lmax)

Attr
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High level sketch: top-down approach

DFW(lmax) ≡ �GW(lmax)

� Assume we can compute GW(lmax),

� Compute the stable set s.t. P1 can satisfy it repeatedly
(sufficient thanks to the inductive property of windows).

G
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High level sketch: top-down approach

DFW(lmax) ≡ �GW(lmax)

� Assume we can compute GW(lmax),

� Compute the stable set s.t. P1 can satisfy it repeatedly
(sufficient thanks to the inductive property of windows).

G
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High level sketch: top-down approach

GW(lmax)

� Simply compute the best sum achievable in at most lmax steps
and check if positive.

Finally,

Theorem

In two-player one-dimension games,
(a) the fixed arbitrary window MP problem is decidable in time
polynomial in the size of the game and the window size,
(b) the fixed polynomial window MP problem is P-complete,
(c) both players require memory, and memory of size linear in the
size of the game and the window size is sufficient.
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Memory is necessary for both players

C1

C3

C2

C1 C2

(C1C2C3)ω, lmax = 4 (C1C2)ω, lmax = 3

3

35

−1

−1 −5 5
5

−11
7

−1−9

−1

−1

2

1

−1

Choices are based on

� the # of steps remaining to close the window,

� the amount to compensate.
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EXPTIME algorithm

Winning plays for the FW objective:

from some point on, on all dimensions, all opening windows
are closed within lmax steps

the closing may be asynchronous

Basically, winning = seeing only a finite number of bad windows

� reduction to an exponentially larger co-Büchi game

� EXPTIME membership and exponential upper bounds on
memory follow
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From FW(lmax) to a co-Büchi game

For each dimension, bookkeeping of

the amount to compensate to close the window,

the remaining # of steps to close it.

When a window closes on dim. t, we reset

� the amount to zero,

� the # of steps to lmax.

Key elements

S ; S × ({−lmax ·W , . . . , 0} × {1, . . . , lmax})k

bad states representing windows not closing in time

co-Büchi objective asks they are visited only finitely often
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EXPTIME-hardness for 2 dim. and arbitrary weights

Reduction from countdown games.

� Weighted graph (S, T ), with S the set of states and
T ⊆ S × N0 × S the transition relation.

� Configurations (s, c), s ∈ S, c ∈ N.

� Game starts in (sinit, c0).

� Transitions from a configuration (s, c) performed as follows:

1 P1 chooses a duration d , 0 < d ≤ c such that there exists
t = (s, d , s ′) ∈ T for some s ′ ∈ S,

2 P2 chooses a state s ′ ∈ S such that t = (s, d , s ′) ∈ T ,
3 the game advances to (s ′, c − d).

� Terminal configurations reached whenever no legitimate move
is available. P1 wins iff (s, 0).

Deciding the winner is EXPTIME-complete [JSL08].
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From CD games to FW
(S, T ), (sinit, c0) ; G , k = 2, lmax = 2 · c0 + 2

sinit (sinit, d) s ′

restart

(c0, 0)

(−d , d) (0, 0)

(0, 0)

(0,−c0)

(c0, 0)

(−d ′, d ′)

(−d ′′, d ′′)

(0, 0)

(0, 0)

� Two dimensions used to store the counter and its opposite

� P1 chooses durations and P2 chooses transitions of the CDG
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� P1 can branch to restart at any time

� There, P2 can delay the closing of open windows then restart
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From CD games to FW
(S, T ), (sinit, c0) ; G , k = 2, lmax = 2 · c0 + 2

sinit (sinit, d) s ′

restart

(c0, 0)

(−d , d) (0, 0)

(0, 0)

(0,−c0)

(c0, 0)

(−d ′, d ′)

(−d ′′, d ′′)

(0, 0)

(0, 0)

� To close the window on the 2nd dim., P1 has to accumulate
at least c0 before branching

� To be safe on the 1st, he must accumulate at most c0

Looking at MP and TP through Windows Chatterjee, Doyen, Randour, Raskin 34 / 44



MP/TP Multi TP Window MP One-Dim. Fixed Multi-Dim. Fixed Multi-Dim. Bounded Conclusion

From CD games to FW
(S, T ), (sinit, c0) ; G , k = 2, lmax = 2 · c0 + 2

sinit (sinit, d) s ′

restart

(c0, 0)

(−d , d) (0, 0)

(0, 0)

(0,−c0)

(c0, 0)

(−d ′, d ′)

(−d ′′, d ′′)

(0, 0)

(0, 0)

� P1 wins for FW iff he reaches exactly c0, i.e., iff he can reach
a terminal configuration (s, 0) in the CDG
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Other results

The multi-dim. FW problem is also

EXPTIME-hard for weights {−1, 0, 1} and arbitrary
dimensions

� membership problem for APTMs [CKS81]

PSPACE-hard even for polynomial windows

� generalized reachability games [FH10]
� also induces that exponential memory is necessary (sufficient

thanks to co-Büchi reduction)
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Approach

� We prove non-primitive recursive1 (NPR) hardness

� Reduction from the termination problem in reset nets (Petri
nets with reset arcs) [Sch02]

1Cf. Ackermann function
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Reset nets

Classic Petri net (places, tokens, transitions) with added reset
arcs

� Transitions may empty a place from all its tokens

� Given an initial marking, the termination problem asks if there
exists an infinite sequence of transitions that can be fired
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From reset nets to direct bounded window games

Crux of the construction: encoding the markings

� We use one dimension for each place
� If a place p contains m tokens, then there will be an open

window on dimension p with sum value −m − 1
� Hence during a faithful simulation, all windows remain

open (you cannot consume tokens that do not exist)

P2 simulates the net

P1 checks if he is faithful

P1 wants to win the direct bounded window MP obj.

� only able to do so if P2 cheats, i.e., if all runs terminate
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The construction in a nutshell

fire

testtiresetq

out

closep

. . . . . .

ti
(I(ti ),−1)

(0,−1)

(0
q
→
−

1
,−

1
)

(0q→1,−1)

(1p→0, 1)

(−O(ti ),−1)

place p

(−m0 − 1, 0)
start

t1 t|T |

� The initial marking open
corresponding windows in all places

� P2 chooses transitions to fire, which
consume tokens

� P1 can branch or continue (and apply
reset, then output)
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. . . . . .

ti
(I(ti ),−1)

(0,−1)

(0
q
→
−

1
,−

1
)

(0q→1,−1)

(1p→0, 1)

(−O(ti ),−1)

place p

(−m0 − 1, 0)
start

t1 t|T |

� If no infinite execution exists, at some
point, P2 must choose a transition
without the needed tokens on some
place p

� The window closes on dimension p

� By branching P1 can close all other
windows and ensure winning
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1
)

(0q→1,−1)

(1p→0, 1)

(−O(ti ),−1)

place p

(−m0 − 1, 0)
start

t1 t|T |

� If P1 branches while P2 is honest, one
window stays open forever and he loses

� The additional dimension ensures that
P1 leaves the reset state
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Extension to bounded window objective

� More involved construction

Theorem

In two-player multi-dimension games, the bounded window
mean-payoff problem is non-primitive recursive hard.
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A new family of objectives

one-dimension k-dimension

complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

MP / MP NP ∩ coNP mem-less coNP-c. / NP ∩ coNP infinite mem-less

TP / TP NP ∩ coNP mem-less undec. - -

WMP: fixed
P-c.

mem. req.

≤ linear(|S | · lmax)

PSPACE-h.

polynomial window EXP-easy
exponential

WMP: fixed
P(|S |,V , lmax) EXP-c.

arbitrary window

WMP: bounded
NP ∩ coNP mem-less infinite NPR-h. - -

window problem

� Conservative approximation of MP/TP

� For one-dim. games with poly. windows, we are in P

� For multi-dim. games with fixed windows, we are decidable

� Window obj. provide timing guarantees

� Open question: is BW decidable in multi-dim. ?
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Check the full version on arXiv! abs/1302.4248

Thanks!

Do not hesitate to discuss with us!
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