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The state(-space) explosion problem (excerpt from Ch. 2)
Verification techniques operate on TSs obtained from programs or
program graphs. Their size can be huge, or they can even be
infinite. Some sources:

Variables
� PG with 10 locations, three Boolean variables and five integers

in {0, . . . , 9} already contains 10 · 23 · 105 = 8.000.000 states.
� Variable in infinite domain ⇒ infinite TS!

Parallelism
� T = T1 9 . . . 9 Tn ⇒ |S | = |S 1 | · . . . · |S n |.

↪→ Exponential blow-up!

⇒ Need for (a lot of) abstraction and efficient symbolic
techniques (Ch. 5) to keep the verification process tractable.

=⇒ Well, here we are!
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What is symbolic model checking?

Classical techniques rely on an explicit, enumerative,
representation of TSs.

� Each individual state is explicitly represented as well as its
successor/predecessor lists.

=⇒ Not adequate for very large TSs!

Idea: represent TSs in a symbolic way by considering sets of
states and sets of transitions instead of individual ones.

=⇒ Leads to more efficient techniques in practice.
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Symbolic CTL model checking

There exist various symbolic approaches for different models
and logics.

In this chapter, we focus on a single one: CTL model
checking via ROBDDs.

Our goal is to illustrate the concept and interest of such an
approach without delving too deep into technical

considerations.

The symbolic set-based approach is natural for CTL as its
semantics and model checking algorithm are based on
satisfactions sets for subformulae.

=⇒ We focus on a technique based on switching functions
and ROBDDs (other techniques exist).
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Key concept: binary encoding of states

Let T = (S ,−→, I,AP,L) be a TS.

� We dropped Act as actions are irrelevant from now on.

� That is, −→⊆ S × S .

We want to encode states as bit vectors.

� We assume that |S | ≥ 2 and let n ≥ dlog |S |e.
↪→ n = # bits used to represent S .

� Let enc : S → {0, 1}n be an arbitrary injective encoding of
states by bit vectors of length n.

� We can make it surjective too w.l.o.g. by using dummy states
in the TS (i.e., we now assume n = log |S |).
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Binary encoding of states
Example

s1 s2

s3 s4

{a} ∅

{b} {a, b}

|S | = 4 =⇒ n = log |S | = 2.

We choose an encoding enc : S → {0, 1}2:

enc(s1) = 00 enc(s2) = 01

enc(s3) = 10 enc(s4) = 11

Characteristic function of a set of states

Any subset T ⊆ S can be represented by its characteristic
function χT : {0, 1}n → {0, 1} such that χT (b) evaluates to true
(i.e., 1) iff the bit vector b ∈ {0, 1}n encodes a state s ∈ T .

E.g., χI(b) =

{
1 if b = 00 ∨ b = 10

0 otherwise
χSat(a∧b)(b) =

{
1 if b = 11

0 otherwise
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Binary encoding of transitions
Example

s1 s2

s3 s4

{a} ∅

{b} {a, b}

|S | = 4 =⇒ n = log |S | = 2.

We choose an encoding enc : S → {0, 1}2:

enc(s1) = 00 enc(s2) = 01

enc(s3) = 10 enc(s4) = 11

Same idea for transitions: −→⊆ S × S is represented by a
Boolean function ∆: {0, 1}2n → {0, 1} assigning 1 to pairs of bit

vectors (b, b
′
) such that s = enc−1(b), s ′ = enc−1(b

′
) and s → s ′.

In the following, we discuss how this encoding can be seen as
switching functions and how CTL model checking can be

formulated on them. Then we present compact
representation of switching functions through ROBDDs.
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Switching functions
Boolean variables and evaluations

Idea

Instead of considering functions {0, 1}n → {0, 1}, we will see bit
vectors in {0, 1}n as evaluations of Boolean variables and consider
mappings from those evaluations to 0 or 1.

Let Var = {z1, . . . , zm} be a set of Boolean variables and
Eval(z1, . . . , zm) be the set of evaluations for those variables, i.e.,
functions η : (z1, . . . , zm)→ {0, 1}m. An evaluation is written as
[z1 = b1, . . . , zm = bm] or, shortly, [z = b] for b ∈ {0, 1}m.

(Notice we use m instead of n here as FTM we forget about TSs
and define those notions in full generality.)
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Switching functions
Definition

Definition: switching function

A switching function for Var = {z1, . . . , zm} is a function
f : Eval(Var)→ {0, 1}. For m = 0 (i.e., Var = ∅), possible
switching functions are constants 0 and 1.

We often write f (b) instead of f ([z = b]) when context is clear.

=⇒ Boolean connectives for switching functions are defined
naturally.

E.g., let f1 and f2 be switching functions for {z1, . . . , zn, . . . , zm}
and {zn, . . . , zm, . . . , zk} respectively. Then, f1 ∨ f2 is a switching
function for {z1, . . . , zk} whose values are given by

(f1 ∨ f2)([z1 = b1, . . . , zk = bk ]) = max
{
f1([z1 = b1, . . . , zm = bm]),

f2([zn = bn, . . . , zk = bk ])
}
.
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Switching functions
As Boolean connections of variables

Observation

Any switching function f for Var = {z1, . . . , zm} can be
represented as a Boolean connection of the variables zi (viewed as
projection switching functions) and constants 0 and 1.

E.g., z1 ∨ (z2 ∧ z3) is a switching function for Var = {z1, z2, z3}.
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Switching functions
Cofactors and essential variables (1/2)

Definition: cofactor

Let f be a switching function for Var = {z , y1, . . . ym}. The
positive cofactor of f for variable z is the switching function
f |z=1 : Eval(Var)→ {0, 1} whose value is given by

f |z=1(c, b1, . . . , bm) = f (1, b1, . . . , bm)

for any bit vector (c , b1, . . . , bm) ∈ {0, 1}m+1.

Negative cofactors are defined similarly with 0 instead of 1.

Iterated cofactors are obtained by successive replacements and
denoted f |z1=b1,...,zk=bk .

Definition: essential variable

Variable z is essential for f iff f |z=0 6= f |z=1.
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Switching functions
Cofactors and essential variables (2/2)

Example 1: let f (z1, z2, z3) = (z1 ∨ ¬z2) ∧ z3.

� f |z1=1 = z3 and f |z1=0 = ¬z2 ∧ z3.

↪→ z1 is essential for f .

Example 2: let f (z1, z2, z3) = z1 (projection function).

↪→ z1 is essential for f whereas z2 and z3 are not.

Example 3: let f (z1, z2, z3) = z1 ∨ ¬z2 ∨ (z1 ∧ z2 ∧ ¬z3).

↪→ z1 and z2 are essential.

↪→ z3 is not because f |z3=1 = z1 ∨ ¬z2 and
f |z3=0 = z1 ∨ ¬z2 ∨ (z1 ∧ z2) = z1 ∨ ¬z2.
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Switching functions
Decomposition into cofactors

Shannon expansion

Let f be a switching function for Var. Then, for each z ∈ Var,

f = (¬z ∧ f |z=0) ∨ (z ∧ f |z=1).

=⇒ This decomposition is the cornerstone of the representation
of switching functions as binary decision trees.
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Switching functions
Binary decision trees

z1

z2 z2

z3 z3 z3 z3

1 0 1 1 0 0 0 0

Binary decision tree for f = z1 ∧ (¬z2 ∨ z3). Solid edge leaving zi
means zi = 1, dashed one means zi = 0. Path from root to leaf
represents an evaluation and its value for f . Subtrees = cofactors.
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Switching functions
Quantification over variables

Existential and universal quantification

Let f be a switching function for Var and z ∈ Var. Then, ∃z .f is
the switching function ∃z .f = f |z=0 ∨ f |z=1 and ∀z .f is the one
defined by ∀z .f = f |z=0 ∧ f |z=1.

Example: let f = (z ∨ y1) ∧ (¬z ∨ y2).

� Then ∃z .f = f |z=0 ∨ f |z=1 = y1 ∨ y2,

� and ∀z .f = f |z=0 ∧ f |z=1 = y1 ∧ y2.
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Switching functions
Renaming

Let z = (z1, . . . , zm), y = (y1, . . . , ym), and x = (x1, . . . , xk) such
that x does not contain any zi or yi . Let
s = [y = b, x = c] ∈ Eval(y , x) be an evaluation.

Then, s{z ← y} denotes the evaluation in Eval(z , x) obtained
through the renaming function yi 7→ zi . That is, s{z ← y} agrees
with s for xi and assigns to zi the same value as s assigns to yi .

Given f : Eval(y , x)→ {0, 1}, then the switching function
f {z ← y} : Eval(z , x)→ {0, 1} is given by
f {z ← y}(s) = f (s{z ← y}). We simply write f (z , x) if the
context is clear.
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Encoding TSs by switching functions
Labeling

Back to TSs: we now use switching functions to give a symbolic
representation of a TS T = (S ,−→, I,AP,L).

� We use n = log |S | Boolean variables x1, . . . , xn to represent
S : we identify any evaluation [x = b] ∈ Eval(x) with the
unique state s ∈ S such that enc(s) = b.
↪→ We assume S = Eval(x).

� Recall that any set T ⊆ S can be described by a characteristic
function χT . Actually, χT is the switching function

χT : Eval(x)→ {0, 1}, χT (s) =

{
1 if s ∈ T

0 otherwise.

=⇒ The labeling function can be represented by a family
(fa)a∈AP of switching functions for x such that fa = χSat(a).
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Encoding TSs by switching functions
Transitions

Same idea: we identify −→ with its characteristic function
S × S → {0, 1} assigning 1 to (s, s ′) iff s −→ s ′.

� We use two variable tuples, x and x ′, to encode s and s ′.

� We encode −→ as the switching function

∆: Eval(x , x ′)→ {0, 1}, ∆(s, s ′{x ′ ← x}) =

{
1 if s −→ s ′

0 otherwise

=⇒ Here we see that the renaming is used because formally s ′ is
an evaluation for x and we need to map it to x ′.
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Encoding TSs by switching functions
Example

s1 s2

{a} {a, b} Need a single Boolean variable x for the encoding:
enc(s1) = 0, enc(s2) = 1.

Labeling?

� fa = χSat(a) = χS = ¬x ∨ x = 1.

� fb = χSat(b) = χ{s2} = x .

Transitions?

� ∆ = (¬x ∧ ¬x ′) ∨ (¬x ∧ x ′) ∨ (x ∧ ¬x ′) = ¬x ∨ ¬x ′.

=⇒ Such a symbolic representation can be obtained for any TS.

=⇒ Exercise: construct the symbolic representation of the
TS in slide 8.
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Encoding TSs by switching functions
Example (contd.)

s1 s2

{a} {a, b} Need a single Boolean variable x for the encoding:
enc(s1) = 0, enc(s2) = 1.

Transitions:

� ∆ = ¬x ∨ ¬x ′.

Successors?

� Post(s1) = {s1, s2} obtained symbolically by

∆|x=0{x ′ ← x} = (¬x ∨ ¬x ′)|x=0{x ′ ← x} = 1.

↪→ Constant 1 means all states of S belong to the Post.

� Post(s2) = {s1} obtained symbolically by

∆|x=1{x ′ ← x} = (¬x ∨ ¬x ′)|x=1{x ′ ← x} = ¬x .
↪→ Only s1 belongs to the Post (because it is encoded as 0,

hence ¬0 = 1, whereas s2 is 1 hence ¬1 = 0).
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CTL model checking using switching functions
Backward reachability

Consider a TS represented by the switching function ∆(x , x ′) and
a set B ⊆ S given by its characteristic function χB . We want to
compute Pre∗(B) = {s ∈ S | s |= ∃♦B} using switching functions.

� f0 = χB represents T 0 = B .

� We compute fj+1 = χT j+1
for

T j+1 = T j ∪ {s ∈ S | ∃s ′ ∈ S , s ′ ∈ Post(s) ∧ s ′ ∈ T j} as

fj+1 = fj ∨ ∃x ′.
(

∆(x , x ′)︸ ︷︷ ︸
s′∈Post(s)

∧ fj(x ′)︸ ︷︷ ︸
s′∈T j

)
=⇒ Blackboard illustration on previous example for s2.
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CTL model checking using switching functions
Adaptation to ∃(C UB)

Input: ∆(x , x ′), χB and χC

Output: fj(x) representing Sat(∃(C UB))
f0(x) := χB (x)
j := 0
repeat

fj+1(x) := fj(x) ∨
(
χC (x) ∧ ∃x ′.

(
∆(x , x ′) ∧ fj(x

′)
))

j := j + 1
until fj(x) = fj−1(x)
return fj(x)

↪→ The additional conjunction ensures that we only add states
from C .
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CTL model checking using switching functions
Adaptation to ∃© B

Recall that Sat(∃© B) = {s ∈ S | Post(s) ∩ B 6= ∅}.

↪→ Here no iteration is needed:

χSat(∃©B)(x) = ∃x ′.
(
∆(x , x ′) ∧ χB (x ′)

)
.
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CTL model checking using switching functions
Adaptation to ∃�B

We need to mimic T 0 = B and
T j+1 = T j ∩ {s ∈ S | ∃s ′ ∈ S , s ′ ∈ Post(s) ∧ s ′ ∈ T j} by a
symbolic computation.

Input: ∆(x , x ′) and χB

Output: fj(x) representing Sat(∃�B)
f0(x) := χB (x)
j := 0
repeat

fj+1(x) := fj(x) ∧ ∃x ′.
(
∆(x , x ′) ∧ fj(x

′)
)

j := j + 1
until fj(x) = fj−1(x)
return fj(x)

=⇒ Blackboard illustration on last example for ∃�b.
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CTL model checking using switching functions
Wrap-up

We now have all the necessary ingredients to deal with CTL
formulae in ENF symbolically: algorithms for atomic
propositions, conjunctions, negations, ∃© Φ, ∃(ΦUΨ) and ∃�Φ
based on switching functions.

E.g., Sat(Φ ∧ ¬Ψ) is given by fΦ ∧ ¬fΨ.

At the end of the model checking process, we must check that
I ⊆ Sat(Φ): this can be achieved by checking that χI → fΦ holds,

i.e., that ¬χI ∨ fΦ = 1 in terms of switching functions.

=⇒ It remains to find appropriate data structures to encode
the switching functions!
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The problem
We are looking for an appropriate data structure to encode the
switching functions. It needs to:

1 yield compact representations of the satisfaction sets and
the transition relation,

2 support Boolean connectives and comparison of
switching functions (to implement the model checking
procedures based on switching functions directly).

Regarding compactness, recall that for a system with |S | = 2n

states, we only need n Boolean variables (2n for transitions).

=⇒ Unfortunately, it can be proved that no data structure can
ensure polynomial-size representations of all switching functions

(because there are doubly-exponentially-many switching functions
for m variables).
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Possible data structures
We know that no structure can avoid exponential representation
for some switching functions.

=⇒ Does not mean that all structures are equally good!

Truth tables are not efficient as they always require 2m entries
for m variables (i.e., whatever the switching function).

Same for binary decision trees: always 2m+1 − 1 nodes.

Conjunctive and disjunctive normal forms are not well-suited
because equivalence checking is hard.
A good choice is ordered binary decision diagrams
(OBDDs).
� Yields compact representations for many switching functions

appearing in practical applications.
� Boolean connectives in linear time (in the input OBDDs).
� Equivalence checking in constant time with appropriate

implementation.
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OBDDs
Intuition

Main idea: compactification of binary decision trees.

z1

z2

z3

1 0

z2

z3 z3

0 0 0 0

0

z3

1 1

11 0

Recall BDT for f = z1 ∧ (¬z2 ∨ z3). Our goal is to skip redundant
fragments of this tree.
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OBDDs
Intuition

Main idea: compactification of binary decision trees.

z1

z2

z3

1 0

z2

z3 z3

0 0 0 0

0

z3

1 1

11 0

The right subtree corresponds to cofactor f |z1=0, modeling the con-
stant function 0: tests on z2 and z3 are useless as all terminal nodes
have value 0.
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OBDDs
Intuition

Main idea: compactification of binary decision trees.

z1

z2

z3

1 0

z2

z3 z3

0 0 0 0

0

z3

1 1

11 0

The right subtree corresponds to cofactor f |z1=0, modeling the con-
stant function 0: tests on z2 and z3 are useless as all terminal nodes
have value 0.

=⇒ We replace this subtree by a single terminal node of value 0.
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OBDDs
Intuition

Main idea: compactification of binary decision trees.

z1

z2

z3

1 0

z2

z3 z3

0 0 0 0

0

z3

1 1

11 0

The subtree corresponding to cofactor f |z1=1,z2=0 is also constant.
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OBDDs
Intuition

Main idea: compactification of binary decision trees.

z1

z2

z3

1 0

z2

z3 z3

0 0 0 0

0

z3

1 1

1

1 0

The subtree corresponding to cofactor f |z1=1,z2=0 is also constant.

=⇒ We replace this subtree by a single leaf of value 1.
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OBDDs
Intuition

Main idea: compactification of binary decision trees.

z1

z2

z3

1 0

z2

z3 z3

0 0 0 0

0

z3

1 1

1

1 0

Now, we finally observe that it is useless to keep several leaves with
the same value.
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OBDDs
Intuition

Main idea: compactification of binary decision trees.

z1

z2

z3

1 0

z2

z3 z3

0 0 0 00

z3

1 11

1 0

Now, we finally observe that it is useless to keep several leaves with
the same value.

=⇒ We only keep one of each.
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OBDDs
Intuition

Main idea: compactification of binary decision trees.

z1

z2

z3

1 0

z2

z3 z3

0 0 0 00

z3

1 11

1 0

At the end, we obtain a directed acyclic graph (DAG) where inner
nodes have outdegree 2. As in BDTs, inner nodes are labeled with
variables and outgoing edges (solid or dashed) correspond to their
evaluations; leaves are labeled with the function value.

=⇒ Much more compact.
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OBDDs
Other example

=⇒ Blackboard example for f = (z1 ∧ z3) ∨ (z2 ∧ z3).

Chapter 5: Symbolic model checking Mickael Randour 32 / 67



Symbolic MC CTL MC through switching functions ROBDDs Other techniques

OBDDs
Variable ordering

Definition: variable ordering

Let Var be a finite set of variables. A variable ordering for Var is
any tuple ℘ = (z1, . . . , zm) such that Var = {z1, . . . , zm} and
zi 6= zj for 1 ≤ i < j ≤ m.

↪→ It induces a total order and operators <℘ and ≤℘:
i.e., zi <℘ zj iff i < j .

=⇒ We will see that different orderings yield different
(R)OBDDs!
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OBDDs
Definition (1/2)

Definition: ordered binary decision diagram (OBDD)

Let ℘ be a variable ordering for Var. A ℘-OBDD is a tuple
B = (V ,VI ,VT , succ0, succ1, var , val , v0) consisting of

a finite set of nodes V partitioned into VI and VT , i.e., inner
nodes and terminal nodes;

successor functions succ0, succ1 : VI → V assigning 0- and
1-successors to inner nodes;

a variable labeling function var : VI → Var assigning a
variable to each inner node;

a value function val : VT → {0, 1} assigning to each terminal
node a function value 0 or 1;

a root node v0 ∈ V .
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OBDDs
Definition (2/2)

The variable labeling function must be consistent with the
ordering: if v is an inner node and w is both a successor of v and
an inner node, then var(v) < var(w) must hold.

↪→ Intuitively, branches must respect the variable ordering.

When referring to the size of an OBDD, we consider its number of
nodes.

" Observe that the definition of OBDDs does not enforce
the reducing operations we have discussed before. In

particular, BDTs are valid OBDDs.
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OBDDs
Semantics

As observed intuitively, the semantics of a ℘-OBDD B is the
switching function fB for Var where fB([z1 = b1, . . . , zm = bm])
is the value of the terminal node reached by following the
corresponding branch of B from the root v0.

=⇒ In the following, we will see how to go from OBDDs to
Reduced OBDDs (ROBDDs): for that, we need to introduce

a few more concepts.
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OBDDs
Bottom-up characterization of switching functions for nodes

Let B be a ℘-OBDD. The switching functions fv for the nodes
v ∈ V are given as follows:

if v is a leaf, then fv is the constant switching function with
value val(v);

if v is a z-node, then fv = (¬z ∧ fsucc0(v)) ∨ (z ∧ fsucc1(v)).

Furthermore, fB = fv0 for the root v0 of B.

=⇒ Observe the Shannon expansion!

↪→ All concepts of OBDD-based approaches are based on this
decomposition into cofactors.
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OBDDs
℘-consistent cofactors (1/2)

Definition: ℘-consistent cofactor

Let f be a switching function for Var and ℘ = (z1, . . . , zm) be an
ordering for Var. A switching function f ′ for Var is a ℘-consistent
cofactor of f if there exists i ∈ {0, . . . ,m} such that
f ′ = f |z1=b1,...,zi=bi .

E.g., let f = z1 ∧ (z2 ∨ ¬z3) and ℘ = (z1, z2, z3). Consistent
cofactors are:

� f itself;

� f |z1=0 = 0 and f |z1=1 = z2 ∨ ¬z3;

� f |z1=1,z2=0 = ¬z3 and f |z1=1,z2=1 = 1;

� f |z1=1,z2=0,z3=0 = 1 and f |z1=1,z2=0,z3=1 = 0 (redundant).

=⇒ ℘-consistent cofactors: f , z2 ∨ ¬z3, ¬z3, 0 and 1.
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OBDDs
℘-consistent cofactors (2/2)

Observation

For each node v in a ℘-OBDD B, the switching function fv is a
℘-consistent cofactor of fB; and for each ℘-consistent cofactor f ′

of f , there is at least one node v in B such that fv = f ′.

=⇒ At least one, but there can be many more! E.g., BDTs
bearing redundant information.

z1

z2 z2

z3 z3 z3 z3

1 0 1 1 0 0 0 0
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OBDDs
℘-consistent cofactors (2/2)

Observation

For each node v in a ℘-OBDD B, the switching function fv is a
℘-consistent cofactor of fB; and for each ℘-consistent cofactor f ′

of f , there is at least one node v in B such that fv = f ′.

=⇒ What about the OBDD obtained after “reduction”?
z1

z2

z3

1 0

=⇒ It is free of redundancies: every ℘-consistent cofactor is
represented by a single node.
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Reduced OBDDs
Definition

Definition: reduced OBDD (ROBDD)

Let B be a ℘-OBDD. It is said to be reduced if for every pair of
nodes (v ,w) in B:

v 6= w =⇒ fv 6= fw .

The fact that each ℘-consistent cofactor corresponds to
exactly one node of a ℘-ROBDD is the crux to obtain the

next theorem.
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Reduced OBDDs
Universality and canonicity

Theorem: universality and canonicity of ROBDDs

Let Var be a finite set of variables and ℘ an ordering for Var.
Then:

(a) for each switching function f for Var, there exists a
℘-ROBDD B with fB = f ;

(b) given two ℘-ROBDDs B and C with fB = fC, then B and C
are isomorphic, i.e., they agree up to renaming of the nodes.

=⇒ It is possible to talk about “the ℘-ROBDD” for a
switching function f (up to isomorphism): this ROBDD is

also the minimal ℘-OBDD for f .
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Reduced OBDDs
Simple construction procedure based on consistent cofactors

Let f be the switching function for Var to represent and ℘ the
ordering of the variables.

If f is constant, then the ROBDD B contains a single terminal
node of the corresponding value. Else we proceed as follows.

Let V be the set of ℘-consistent cofactors of f .

� The root of B is f and the constant cofactors are the leaves
with corresponding values.

� For f ′ ∈ V \ {0, 1}, let var(f ′) = min{z ∈ Var | z is essential
for f ′} (resp. to the ordering).

� Successors functions are succ0(f ′) = f ′|z=0 and
succ1(f ′) = f ′|z=1 where z = var(f ′).

By construction, this yields a ℘-OBDD B, and by Shannon
expansion, its semantics is indeed fB = f and it is reduced (as
each node represents a different cofactor).
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Reduced OBDDs
Example

By universality of ROBDDs, any switching function can be
encoded: let us encode the transition relation of the previous TS.

s1 s2

{a} {a, b} Need a single Boolean variable x for the encoding:
enc(s1) = 0, enc(s2) = 1.

� Transitions: ∆ = ¬x ∨ ¬x ′.

=⇒ Blackboard construction.

x

x ′

0 1

ROBDD ℘ = (x , x ′).
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Reduced OBDDs
Consequences of canonicity

The canonicity of ROBDDs yields interesting properties.

Absence of redundant vertices: if fB does not depend on xi ,
then B does not contain an xi -node.

Test for equivalence between two switching functions f (x)
and f ′(x) can be done by generating ROBDDs Bf and Bf ′

and checking their isomorphism.

Test for validity: checking if f (x) = 1 can be done by
generating Bf and checking that it only consists of a 1-leaf.

Test for implication: checking if f (x)→ f ′(x) by generating
Bf ∧¬f ′ and checking that it only consists of a 0-leaf.

Test for satisfiability of a Boolean expression f by checking
that Bf contains a reachable 1-leaf.

" The SAT problem is NP-complete! Further proof that ROBDDs
cannot ensure polynomial encoding of all switching functions.
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Reduced OBDDs
From OBDDs to ROBDDs (1/2)

Reduction rules

Any ℘-OBDD can be transformed into a canonical ℘-ROBDD for
the same switching function by successive applications of two
simple local reduction rules.

1 Elimination rule: if v ∈ VI is s.t. succ0(v) = succ1(v) = w ,
then remove v and redirect all its incoming edges to w .

2 Isomorphism rule: if v 6= w are the roots of isomorphic trees,
remove w and redirect all its incoming edges to v .

v

w

becomes w

Elimination rule.

v

0

w

1

becomes

v

0 1

Isomorphism rule.
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Reduced OBDDs
From OBDDs to ROBDDs (2/2)

This reduction scheme is

sound: if C is a ℘-OBDD obtained by reduction from B, then
fC = fB;

complete: the ℘-OBDD B is a ℘-ROBDD iff no reduction
rule can be applied to B.

It can be implemented in linear time in the size of B.
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Reduced OBDDs
The variable ordering problem

ROBDDs are canonical. . . for a fixed variable ordering!

=⇒ The size of the ROBDD crucially depends on the ordering
(recall that |V | = # of ℘-consistent cofactors of f ).

Some functions have

both linear and exponential ROBDDs depending on the
chosen ordering: e.g., the stable function;

↪→ See next slide.

only polynomial ROBDDs: e.g., symmetric functions such as
f (x) = x1 ⊕ . . . ⊕ xn or f (x) = 1 iff ≥ k variables xi are true;

only exponential ROBDDs: e.g., the middle bit of the
multiplication function.

↪→ See book.
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Reduced OBDDs
The stable function: exponential vs. linear ROBDDs

Example from [Kat10]: fstab(x , y) = (x1 ↔ y1) ∧ . . . ∧ (xn ↔ yn).

� ℘ = (x1, . . . , xn, y1, . . . , yn) yields O(2n) nodes.
� ℘ = (x1, y1, . . . , xn, yn) yields O(n) nodes.

=⇒ Intuitively, the second ordering checks each conjunct
sequentially whereas the first one needs to recall the values of all

variables xi before being able to check the first conjunct.
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Reduced OBDDs
Finding a good ordering

The size of ROBDDs drastically depends on the ordering.

Can we determine which is the best ordering, i.e., yielding the
minimal ROBDD?

� Not efficiently: checking if a variable ordering is optimal is
NP-hard.

=⇒ In practice, efficient heuristics are used to improve the
current ordering and rearrange the ROBDD. Beyond the scope of

this course.

=⇒ For transition relations, the interleaved ordering usually
yields compact ROBDDs:

for ∆(x , x ′), use ℘ = (x1, x
′
1, . . . , xn, x

′
n).
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Back to CTL model checking
We already established

1 a symbolic CTL model checking procedure based on switching
functions,

2 that switching functions can be represented by ROBDDs
which, for practical cases, are often compact.

The missing piece is how to actually implement the model
checking blocks based on ROBDD-representations of the switching

functions.

=⇒ We need to be able to synthesize an ROBDD for a
switching function f (as sketched before), but also to

implement Boolean connectives at the ROBDD level.
I.e., given ℘-ROBDDs for f1 and f2, we must be able to build a

℘-ROBDD for f1 op f2 where op is a Boolean connective
(conjunction, implication, etc).
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Synthesis of ROBDDs
We concentrate on the problem of synthesizing Bf1 op f2 from Bf1

and Bf2 .

=⇒ We do not address the problem in full details but sketch the
key steps of an approach based on shared OBDDs.

� The idea is to use a single ROBDD with global variable
ordering ℘ to represent several switching functions.

� The shared OBDD can be seen as the combination of several
ROBDDs obtained by sharing nodes for common ℘-consistent
cofactors.

=⇒ Increased compactness: in the worst case, the shared
OBDD will have its size bounded by the sum of sizes for all

combined ROBDDs, but in practice it is often much more compact
as shared cofactors are common.
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Shared OBDDs

Definition: shared OBDD (SOBDD)

A ℘-SOBDD is simply a ℘-ROBDD with possibly multiple roots
instead of a single one.

z1 z1 z1

z2 z2

0 1

SOBDD representing f1 = z1 ∧ ¬z2, f2 = ¬z2, f3 = z1 ⊕ z2 and
f4 = ¬z1 ∨ z2 for ordering ℘ = (z1, z2).

Chapter 5: Symbolic model checking Mickael Randour 52 / 67



Symbolic MC CTL MC through switching functions ROBDDs Other techniques

Using SOBDDs for model checking a CTL formula Φ
Sketch (1/2)

We use a single SOBDD to encode:

∆(x , x ′) for the transition function,

functions (fa)a∈AP for the satisfaction sets Sat(a) where
a ∈ AP,

the satisfaction sets Sat(Ψ) for the subformulae Ψ of Φ.

In practice, the interleaved ordering gives good results.
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Using SOBDDs for model checking a CTL formula Φ
Sketch (2/2)

Model checking process:

1 At start, we synthesize an SOBDD representing ∆ and
functions (fa)a∈AP.

2 During the procedure, we extend it with new root nodes for
characteristic functions χSat(Ψ) for subformulae Ψ of Φ.
� E.g., if Φ = a ∧ ¬b, then we first have to insert a root for

f¬b = ¬fb, and then a root for fa ∧ f¬b.
� For formulae like ∃�Ψ, we need to compute a sequence of

iterations fi , and each of them must be added to the SOBDD.
� Each root addition may induce the addition of consistent

cofactors not already present in the SOBDD.

Operations on the SOBDD are interleaved with reduction
rules to ensure redundance-freedom at any time, making the

comparison between two functions easy (it boils down to
node equality).
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Synthesizing SOBDDs
Two tables: unique and computed

The synthesis process relies on two tables for its computations.

The unique table.

� Keeps track of created nodes.
� Each inner node v has an entry 〈var(v), succ1(v), succ0(v)〉.
� Access via find or add(z , v1, v0) with v1 6= v0:

• returns v if there is a node v = 〈z , v1, v0〉 in the SOBDD,

=⇒ Isomorphism reduction rule.

• if not, creates a new z-node v with succ1(v) = v1 and
succ0(v) = v0.

� Implemented via hash functions (expected access in O(1)).

The computed table.

� Keeps track of already computed tuples for upcoming function
ITE (memoization).

� Avoids redundant computations.
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Synthesizing SOBDDs
The ITE operator (1/3)

We deal with all Boolean connectives through a single ternary
operator, ITE (if-then-else):

ITE(g , f1, f2) = (g ∧ f1) ∨ (¬g ∧ f2).

=⇒ If g then f1 else f2.

Link with the unique table representation of node v :

fv = ITE(z , fsucc1(v), fsucc0(v)).

=⇒ Again the Shannon expansion!
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Synthesizing SOBDDs
The ITE operator (2/3)

The ITE(g , f1, f2) = (g ∧ f1) ∨ (¬g ∧ f2) operator can give us:

f1 = ITE(1, f1, f2) f2 = ITE(0, f1, f2) ¬f = ITE(f , 0, 1)

f1 ∨ f2 = ITE(f1, 1, f2) f1 ∧ f2 = ITE(f1, f2, 0) f1 → f2 = ITE(f1, f2, 1)

f1 ⊕ f2 = ITE(f1,¬f2, f2) = ITE(f1, ITE(f2, 0, 1), f2).

Key observation

Let g , f1, f2 be switching functions for Var, z ∈ Var and
b ∈ {0, 1}. Then:

ITE(g , f1, f2)|z=b = ITE(g |z=b, f1|z=b, f2|z=b).

=⇒ This observation is at the basis of the upcoming algorithm.
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Synthesizing SOBDDs
The ITE operator (3/3)

From this observation, it follows that a node representing
ITE(g , f1, f2) is a node w = 〈z ,w1,w0〉 where

z is the ℘-minimal essential variable of ITE(g , f1, f2),

wb is a node with fwb
= ITE(g |z=b, f1|z=b, f2|z=b).

This suggests a recursive algorithm:

determine z ,

recursively compute the nodes for ITE applied to the cofactors
of g , f1 and f2.
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Synthesizing SOBDDs
Basic algorithm for ITE(u, v1, v2)

Input: u, v1 and v2 three ℘-SOBDD nodes
Output: w the ℘-SOBDD node whose subtree represents fw = ITE(u, v1, v2)

if u is terminal then
if val(u) = 1 then

w := v1 {ITE(1, fv1 , fv2) = fv1}
else

w := v2 {ITE(0, fv1 , fv2) = fv2}
else

z := min{var(u), var(v1), var(v2)} {z is the minimal essential variable}
w1 := ITE(u|z=1, v1|z=1, v2|z=1)
w0 := ITE(u|z=0, v1|z=0, v2|z=0)
if w0 = w1 then

w := w1 {elimination rule}
else

w := find or add(z ,w1,w0) {isomorphism rule}
return w

=⇒ Blackboard illustration on example from slide 52.
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Synthesizing SOBDDs
Basic algorithm for ITE(u, v1, v2): illustration

z1 z1 z1 z1

z2 z2

0 1

SOBDD representing f1 = z1 ∧ ¬z2, f2 = ¬z2, f3 = z1 ⊕ z2 and
f4 = ¬z1 ∨ z2 for ordering ℘ = (z1, z2).

We can compute f2 ∧ f4 = ¬z2 ∧ ¬z1 by applying ITE(f2, f4, 0): the
result is the added orange part on the SOBDD. We can easily
check that it indeed represents the desired switching function.
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Synthesizing SOBDDs
Going further

Many optimizations exist to make this approach more efficient.

� A crucial one is the use of the computed table for
memoization.

To actually achieve CTL model checking, we still need some more
operators to deal with renaming and preimage computation.

DON’T PANIC!1

We have seen enough for this course: check the book for more.

1And remember your towel. . .
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Efficiency of the BDD-based CTL model checking

The BDD-based approach

does not reduce the worst-case complexity of CTL model
checking;

greatly helps in many practical applications.

� Depending on the underlying structure of the TS, gains can be
huge.

� In some applications, TSs with 10120 states could be verified
through this technique [Kat10] (and could not by explicit
techniques).
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1 Symbolic model checking: why, what and how?

2 CTL model checking through switching functions

3 Efficient encoding through ROBDDs

4 A glance at other approaches for efficient model checking
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Beyond CTL and BDDs

There are many other techniques and approaches to tackle the
state-space explosion problem

� not only for CTL,

� not only via symbolic techniques.

=⇒ We briefly mention some of them in the next slides
(non-exhaustive list).
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Model checking with partial order reduction

Consider a TS arising from the interleaving between different
processes and an LTL or CTL∗ formula to check.

In general, one must consider an exponential # of orderings of
actions: all possible interleavings must be checked.

Now, if the actions of the processes are “independent” (e.g.,
one executes x := x + 2 while another one does y := y − 3),
different orderings can be considered equivalent w.r.t. the
property to check.

=⇒ Partial order reduction techniques aim at reducing the
state space by reducing the # of orderings to consider.

=⇒ Can lead to huge gain since the state space grows
exponentially with the # of processes.
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Model checking with symmetry reduction

Various methods considering quotient state spaces based on
symmetry reduction.

The most aggressive methods may lead to false negatives
(i.e., unreported errors) but in practice permit to deal with
systems otherwise not checkable at all.

=⇒ Still useful in practice even if not complete.
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Bounded model checking

Instead of considering infinite executions of the system, we settle
for executions up to K steps.

No guarantee that the system will work as intended beyond K
steps.

In practice, most errors can be detected after a reasonable
number of steps.

Technically based on extremely optimized SAT solvers.

� NP-hard problem but efficiently solvable in most practical
cases.

=⇒ Quite efficient in practice.
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