Formal Methods for System Design

Chapter 4: Computation tree logic

Mickael Randour

Mathematics Department, UMONS

October 2023

1 CTL: a specification language for BT properties

- 2 CTL model checking
- 3 CTL vs. LTL

1 CTL: a specification language for BT properties

2 CTL model checking

3 CTL vs. LTL

CTL*

Branching time semantics: a reminder

Intuition

- In LTL, $s \models \phi$ means that all paths starting in s satisfy ϕ .
 - ▷ Implicit universal quantification.
 - \triangleright Could be made explicit by writing $s \models \forall \phi$.
- What if we want to talk about some paths?
 - \triangleright E.g., *does there exist* a path satisfying ϕ starting in s?
 - \triangleright Could be expressed using the duality between universal and existential quantification: $s \models \exists \phi \text{ iff } s \not\models \forall \neg \phi$.
- What if the property is more complex? E.g., do all executions always have the possibility to eventually reach (*)?
 - ▷ $s \models \forall \Box \diamondsuit b$ does not work as it requires all paths to always return in (b), not just to have the *possibility* to do so.
 - ▷ Not expressible in LTL. We need nesting of path quantifiers (\forall, \exists) .
 - S ⊨ ∀□ ∃◊b is a CTL formula: "for all paths, it is always the case (i.e., at every step along the branch) that there exists a path (which can be branching) that eventually reaches b."

Chapter 4: Computation tree logic

CTL vs. LTL

Different notions of time

- In LTL, we reason about paths and their traces.
 - ▷ Time is linear: along a trace, any point has only one possible future.
- In CTL, we reason about the computation tree and its branching behavior.
 - ▷ Time is branching: any point along an execution (i.e., node in the tree) has several possible futures.

\Longrightarrow We will see that the expressiveness of LTL and CTL are incomparable. . .

... and we will sketch CTL*, a logic which subsumes both LTL and CTL.

CTL in a nutshell (1/2)

In CTL, we have two types of formulae.

State formulae are assertions about atomic propositions in states *and their branching structure*.

- \hookrightarrow Written in uppercase Greek letters: e.g., $\Phi,$ $\Psi.$
 - Atomic propositions $a \in AP$ (represented as (a), (b), etc).
 - Boolean combinations of formulae: $\neg \Phi$, $\Phi \land \Psi$, $\Phi \lor \Psi$.
 - **Path quantification** using *path formulae*.
 - \hookrightarrow Path formulae written in lowercase Greek letters: e.g., ϕ , ψ .

Existential quantification $\exists \phi$.

Universal quantification $\forall \phi$.

CTL in a nutshell (2/2)

Path formulae use temporal operators.

Differences between CTL path formulae and LTL formulae

Path formulae

- cannot be combined with boolean connectives;
- do not allow nesting of temporal modalities.

In CTL, every temporal operator must be in the immediate scope of a path quantifier!

E.g., $s \models \forall \Box \exists \Diamond b$ is a valid CTL formula but $s \models \forall \Box \Diamond b$ is not.

CTL syntax

Core syntax

CTL syntax

Given the set of atomic propositions AP, CTL *state formulae* are formed according to the following grammar:

 $\Phi ::= \mathsf{true} \mid \mathbf{a} \mid \Phi \land \Psi \mid \neg \Phi \mid \exists \phi \mid \forall \phi$

where $a \in AP$ and ϕ is a path formula. CTL *path formulae* are formed according to the following grammar:

 $\phi \mathrel{:\!\!:=} \bigcirc \Phi \mid \Phi \, \mathsf{U} \, \Psi$

where Φ and Ψ are state formulae.

$\implies {\sf The syntax enforces the presence of a path quantifier} \\ {\sf before every temporal operator.}$

 \hookrightarrow When we just say *CTL formula*, we mean CTL *state* formula.

Chapter 4: Computation tree logic

Mickael Randour

CTL syntax Examples (1/2)

CTL syntax reminder

 $\Phi ::= \mathsf{true} \mid \textit{a} \mid \Phi \land \Psi \mid \neg \Phi \mid \exists \phi \mid \forall \phi \qquad \phi ::= \bigcirc \Phi \mid \Phi \, \mathsf{U} \, \Psi$

• Is $\Phi = \exists \bigcirc a$ a valid CTL formula?

▷ Yes, because $\phi = \bigcirc a$ is a valid path formula, hence $\Phi = \exists \phi$ is a valid state formula.

• Is $\Phi = a \wedge b$ a valid CTL formula?

▷ Yes, because $\Psi_1 = a$ and $\Psi_2 = b$ are valid state formulae, hence $\Phi = \Psi_1 \land \Psi_2$ is a valid state formula.

Is Φ = ∀(a ∧ ∃ ○ b) a valid CTL formula?
 No, because φ = a ∧ ∃ ○ b is not a valid path formula (should be ○ Ψ or Ψ₁ U Ψ₂).

CTL syntax Examples (2/2)

CTL syntax reminder

 $\Phi ::= \mathsf{true} \mid \textit{a} \mid \Phi \land \Psi \mid \neg \Phi \mid \exists \phi \mid \forall \phi \qquad \phi ::= \bigcirc \Phi \mid \Phi \, \mathsf{U} \, \Psi$

• Is $\Phi = \exists ((\forall \bigcirc a) \cup (a \land b))$ a valid CTL formula?

▷ Yes, because $\Psi_1 = \forall \bigcirc a$ and $\Psi_2 = a \land b$ are valid state formulae, hence $\phi = \Psi_1 \cup \Psi_2$ is a valid path formula, hence $\Phi = \exists \phi$ is a valid state formula.

• Is $\Phi = \exists \bigcirc (a \cup b)$ a valid CTL formula?

▷ No, because $\phi = a \cup b$ is a valid *path* formula whereas we require a *state* formula at this position. I.e., one needs to insert quantification for the U operator.

CTL syntax

Derived operators

Boolean operators false, \lor , \oplus , \rightarrow , \leftrightarrow derived as for LTL.

Other derivations also similar:

 $\begin{array}{ll} \exists \diamondsuit \Phi \equiv \exists (\mathsf{true} \, \cup \, \Phi) & *\mathsf{potentially}^* \\ \forall \diamondsuit \Phi \equiv \forall (\mathsf{true} \, \cup \, \Phi) & *\mathsf{inevitably}^* \\ \exists \Box \Phi \equiv \neg \forall \diamondsuit \neg \Phi & *\mathsf{potentially} \, \mathsf{always}^* \\ \forall \Box \Phi \equiv \neg \exists \diamondsuit \neg \Phi & *\mathsf{invariantly}^* \\ \exists (\Phi \, W \, \Psi) \equiv \neg \forall ((\Phi \wedge \neg \Psi) \, \cup (\neg \Phi \wedge \neg \Psi)) & *\mathsf{weak} \, \mathsf{until}^* \\ \forall (\Phi \, W \, \Psi) \equiv \neg \exists ((\Phi \wedge \neg \Psi) \, \cup (\neg \Phi \wedge \neg \Psi)) & \\ \end{array}$

Would $\forall \Box \Phi \equiv \forall \neg \Diamond \neg \Phi$ be a correct derivation (similar to LTL)?

No! Because \neg cannot be applied to *path* formulae.

 \Longrightarrow Derivations are based on the duality between \exists and $\forall.$

CTL syntax

Precedence order

Same rules as for LTL, with quantifiers $\exists, \; \forall \; directly \; linked to the following path formula.$

Safety

Formalizing LT/BT properties in CTL

TS for semaphore-based mutex [BK08] (Ch. 2).

Formalizing LT/BT properties in CTL

Liveness

Beverage vending machine [BK08] (Ch. 2).

- \triangleright AP = {paid, drink}, natural labeling.
- ▷ In LTL, $\Box \diamondsuit drink$.
- \hookrightarrow In CTL, $\forall \Box \forall \Diamond drink$. Intuitively, for all paths, it is true at every step that all futures will eventually reach *drink*.

 \implies Formal proof after proper definition of the semantics.

Chapter 4: Computation tree logic

Mickael Randour

CTL vs. LTL

CTL* 000000000

Formalizing LT/BT properties in CTL Persistence (1/3)

Ensure that from some point on, a holds but b does not.

▷ In LTL,
$$\Diamond \Box (a \land \neg b)$$
.

 \hookrightarrow In CTL...?

This property cannot be expressed in CTL!

 \implies Informal argument in the next slide...

Chapter 4: Computation tree logic

Mickael Randour

CTL* 000000000

Formalizing LT/BT properties in CTL

Persistence (2/3)

Take a simpler TS \mathcal{T} :

It clearly satisfies LTL formula $\phi = \Diamond \Box a$.

As all paths, the highlighted one must satisfy $\forall \Box a$ for Φ to hold.

But there is no state along this path where $\forall \Box a$ holds as we can always branch to b! $\implies \mathcal{T} \not\models \Phi.$ Best guess for equivalent CTL formula: $\Phi = \forall \diamondsuit \forall \Box a$ (we want this to be true on *all* paths).

But what is the execution tree?

Formalizing LT/BT properties in CTL

Persistence (3/3) Intuition.

- In LTL, time is linear.
 - ▷ Either we have a path that do branch to b, thus □a is true after b. Or we never branch and □a is true from the initial state.
- In CTL, time is *branching*.
 - $\triangleright~$ We have to use the \forall quantifier (as we want to characterize all paths).
 - ▷ But then ◊∀□a asks to reach a state where all possible futures satisfy □a.
 - \triangleright Not possible because of the possibility of branching.

Hence, even if all branches satisfy $\Diamond \Box a$, the CTL formula requires the additional (and not verified) existence of nodes in the tree whose subtrees only contain paths satisfying $\Box a$.

Formalizing LT/BT properties in CTL

Typical BT property

Along all paths, it is always *possible* to reach (a, c).

- Not expressible in LTL: in linear time, either you reach or you do not. Reasoning about possible futures requires branching time.
- \hookrightarrow In CTL, $\forall \Box \exists \diamondsuit(a \land c)$.

CTL model checking

CTL* 000000000

CTL semantics

Chapter 4: Computation tree logic

Mickael Randour

CTL semantics

For state formulae

Let $\mathcal{T} = (S, Act, \longrightarrow, I, AP, L)$ be a TS without terminal states, $a \in AP$, $s \in S$, Φ and Ψ be CTL state formulae and ϕ be a CTL path formula.

Satisfaction for state formulae

 $s \models \Phi$ iff formula Φ holds in state s.

$s \models true$		
$s \models a$	iff	$a \in L(s)$
$s\models\Phi\wedge\Psi$	iff	$s\models\Phi \text{ and }s\models\Psi$
$s \models \neg \Phi$	iff	$s \not\models \Phi$
$s\models \exists \phi$	iff	$\exists \pi \in Paths(s), \ \pi \models \phi$
$s\models \forall \phi$	iff	$\forall \pi \in Paths(s), \ \pi \models \phi$

Chapter 4: Computation tree logic

CTL semantics

For path formulae

Let $\pi = s_0 s_1 s_2 \ldots$

Satisfaction for path formulae

 $\pi \models \phi$ iff path π satisfies ϕ .

$$\begin{split} \pi &\models \bigcirc \Phi & \text{iff} \quad s_1 \models \Phi \\ \pi &\models \Phi \cup \Psi & \text{iff} \quad \exists j \ge 0, \ s_j \models \Psi \text{ and } \forall 0 \le i < j, \ s_i \models \Phi \\ \pi &\models \Diamond \Phi & \text{iff} \quad \exists j \ge 0, \ s_j \models \Phi \\ \pi &\models \Box \Phi & \text{iff} \quad \forall j \ge 0, \ s_i \models \Phi \end{split}$$

CTL semantics

For transition systems

Let $\mathcal{T} = (S, Act, \longrightarrow, I, AP, L)$ be a TS and Φ a CTL state formula over AP.

Definition: satisfaction set

The satisfaction set $Sat_{\mathcal{T}}(\Phi)$ (or briefly, $Sat(\Phi)$) for formula Φ is

 $Sat(\Phi) = \{ s \in S \mid s \models \Phi \}.$

TS ${\cal T}$ satisfies $\Phi,$ denoted ${\cal T}\models \Phi,$ iff Φ holds in all initial states, i.e.,

$$\mathcal{T} \models \Phi \text{ iff } I \subseteq Sat(\Phi).$$

Example

Notice the two initial states.

- $\mathcal{T} \models \forall \bigcirc a$ $\mathcal{T} \not\models \exists (a \cup b)$ $\mathcal{T} \models \exists \Box a$ $\mathcal{T} \models \exists (a \cup c)$
- $\mathcal{T} \not\models \exists \diamondsuit b$ $\mathcal{T} \not\models \forall \Box a$
 - $\mathcal{T} \models \forall (a \, \mathbb{W} \, b)$
 - $\mathcal{T}\models\exists\Box\neg b$

- $\mathcal{T} \not\models orall (a \cup b)$
- $\mathcal{T} \models \forall \Box \exists \Diamond \forall \Box \forall \Diamond c$
 - $\mathcal{T} \models \forall \Box (c \rightarrow \forall \bigcirc a)$ $\mathcal{T} \models \exists \Box \exists \Diamond b \rightarrow \neg c$

 \implies Blackboard solution.

Playing with the semantics Infinitely often (1/3)

Earlier, we claimed that the CTL formula $\Phi = \forall \Box \forall \diamondsuit a$ is *equivalent* to the LTL formula $\phi = \Box \diamondsuit a$, i.e., for all TS $\mathcal{T}, \mathcal{T} \models \Phi$ iff $\mathcal{T} \models \phi$.

\implies Let's prove it!

We prove the more precise statement: $\forall s \in S$, $s \models \Phi \iff s \models \phi$, which implies the result for TSs.

Playing with the semantics Infinitely often (2/3)

$s \models \Phi \implies s \models \phi.$

- Let $s \models \Phi$. We must prove that $\forall \pi = s_0 s_1 s_2 \ldots \in Paths(s)$, $\pi \models \phi$, i.e., for all $j \ge 0$, there exists $i \ge j$ such that $s_i \models a$.
- **2** Since $s \models \forall \Box \forall \Diamond a$ and $\pi \in Paths(s)$, we have $\pi \models \Box \forall \Diamond a$.
- **3** Hence, $s_j \models \forall \diamondsuit a$.
- 4 Since $\pi[j..] = s_j s_{j+1} \ldots \in Paths(s_j)$, we have that $\pi[j..] \models \diamondsuit a$.
- **5** Hence, there exists $i \ge j$ such that $s_i \models a$.
- 6 This holds for all *j* so we are done.

Playing with the semantics

Infinitely often (3/3)

 $s \models \Phi \iff s \models \phi.$

1 Let $s \models \phi$. We must prove that $s \models \forall \Box \forall \Diamond a$, i.e, that $\forall \pi = s_0 s_1 s_2 \ldots \in Paths(s), \ \pi \models \Box \forall \Diamond a$.

- **2** I.e., that for all $j \ge 0$, $s_j \models \forall \diamondsuit a$.
- 3 Let $j \ge 0$ and fix any path $\pi' = s_j s'_{j+1} s'_{j+2} \ldots \in Paths(s_j)$. We must show that $\pi' \models \Diamond a$.
- 4 But, then $\pi'' = s_0 s_1 \dots s_j s'_{j+1} s'_{j+2} \dots \in Paths(s)$. Hence, $\pi'' \models \Box \diamondsuit a$ by hypothesis.
- **5** Hence, there exists i > j such that $s'_i \models a$.
- **6** Therefore, $\pi' \models \Diamond a$.
- **7** This holds for any path $\pi' \in Paths(s_j)$ so $s_j \models \forall \diamondsuit a$.
- 8 Since it holds for all j, $\pi \models \Box \forall \diamondsuit a$.
- **9** Finally, it holds for all $\pi \in Paths(s)$, thus $s \models \Phi$.

Semantics of negation

Negation for states

For $s \in S$ and a CTL formula Φ over AP,

$$s \not\models \Phi \iff s \models \neg \Phi.$$

Intuitively, due to the duality between \forall and \exists and the semantics of negation for path formulae (see LTL, either a path satisfies ϕ or it satisfies $\neg \phi$).

Semantics of negation

Transition systems

Negation for TSs

For TS $\mathcal{T} = (S, Act, \longrightarrow, I, AP, L)$ and a CTL formula Φ over AP:

 $\begin{array}{c} \mathcal{T} \not\models \Phi \\ & \not \downarrow \uparrow \\ \mathcal{T} \models \neg \Phi \end{array}$

We have that
$$\mathcal{T} \not\models \Phi$$
 iff $I \nsubseteq Sat(\Phi)$
iff $\exists s \in I, s \not\models \Phi$
iff $\exists s \in I, s \models \neg \Phi$

But it may be the case that $\mathcal{T} \not\models \Phi$ and $\mathcal{T} \not\models \neg \Phi$ if $\exists s_1, s_2 \in I \text{ such that } s_1 \models \Phi \text{ and } s_2 \models \neg \Phi.$

Semantics of negation

Example

Consider CTL formula $\Phi = \exists \Box a$. Do we have that $\mathcal{T} \models \Phi$?

Beware of erroneous intuition! $\mathcal{T} \models \exists \phi \iff \exists \sigma \in Traces(\mathcal{T}), \ \sigma \models \phi.$

Indeed, Φ must hold in all initial states.

 \hookrightarrow Here it does not in $s_2 \implies \mathcal{T} \not\models \Phi$.

Do we have that $\mathcal{T} \models \neg \Phi = \forall \Diamond \neg a$? \hookrightarrow No. Because of path $(s_1)^{\omega}$, $s_1 \not\models \neg \Phi \implies \mathcal{T} \not\models \neg \Phi$. Surprising equivalence.

 $\mathcal{T} \not\models \neg \exists \phi \iff \exists \sigma \in \mathit{Traces}(\mathcal{T}), \ \sigma \models \phi.$

Chapter 4: Computation tree logic

Mickael Randour

Definition

Equivalence of CTL formulae

CTL (state) formulae Φ and Ψ over AP are *equivalent*, denoted $\Phi \equiv \Psi$, if and only if, for all TS \mathcal{T} over AP,

$$Sat(\Phi) = Sat(\Psi).$$

In particular, $\Phi \equiv \Psi \iff (\forall \mathcal{T}, \ \mathcal{T} \models \Phi \iff \mathcal{T} \models \Psi).$

\implies Let us review some computational rules.

Duality for path quantifiers

$\forall \bigcirc \Phi$	≡	$\neg \exists \bigcirc \neg \Phi$
$\exists \bigcirc \Phi$	\equiv	$\neg \forall \bigcirc \neg \Phi$
$\forall \diamondsuit \Phi$	\equiv	$\neg \exists \Box \neg \Phi$
$\exists \diamondsuit \Phi$	\equiv	$\neg \forall \Box \neg \Phi$
$\forall (\Phi U \Psi)$	≡	$\neg\exists(\neg\PsiU(\neg\Phi\wedge\neg\Psi))\wedge\neg\exists\Box\neg\Psi$
	≡	$ eg \exists ((\Phi \land \neg \Psi) U (\neg \Phi \land \neg \Psi)) \land \neg \exists \Box (\Phi \land \neg \Psi)$
	\equiv	$\neg\exists((\Phi\wedge\neg\Psi)W(\neg\Phi\wedge\neg\Psi))$
$\exists (\Phi \cup \Psi)$	≡	$\neg \forall ((\Phi \land \neg \Psi) W (\neg \Phi \land \neg \Psi))$

Distribution

$$\forall \Box (\Phi \land \Psi) \equiv \forall \Box \Phi \land \forall \Box \Psi$$

 $\exists \diamondsuit (\Phi \lor \Psi) \equiv \exists \diamondsuit \Phi \lor \exists \diamondsuit \Psi$

Similar to LTL $\Box(\phi \land \psi) \equiv \Box \phi \land \Box \psi$ and $\Diamond(\phi \lor \psi) \equiv \Diamond \phi \lor \Diamond \psi$.

But not all laws can be lifted!

Chapter 4: Computation tree logic

Expansion laws

In LTL, we had:

$$\begin{array}{rcl} \phi \: \mathsf{U} \: \psi & \equiv & \psi \lor (\phi \land \bigcirc (\phi \: \mathsf{U} \: \psi)) \\ \diamondsuit \phi & \equiv & \phi \lor \bigcirc \diamondsuit \phi \\ \Box \phi & \equiv & \phi \land \bigcirc \Box \phi \end{array}$$

In CTL, we have:

$$\begin{array}{rcl} \forall (\Phi \cup \Psi) & \equiv & \Psi \lor (\Phi \land \forall \bigcirc \forall (\Phi \cup \Psi)) \\ \forall \Diamond \Phi & \equiv & \Phi \lor \forall \bigcirc \forall \Diamond \Phi \\ \forall \Box \Phi & \equiv & \Phi \land \forall \bigcirc \forall \Box \Phi \\ \exists (\Phi \cup \Psi) & \equiv & \Psi \lor (\Phi \land \exists \bigcirc \exists (\Phi \cup \Psi)) \\ \exists \Diamond \Phi & \equiv & \Phi \lor \exists \bigcirc \exists \Diamond \Phi \\ \exists \Box \Phi & \equiv & \Phi \land \exists \bigcirc \exists \Box \Phi \end{array}$$

Existential normal form (ENF)

ENF for CTL

Goal

Retain the full expressiveness of CTL but permit *only existential quantifiers* (thanks to negation and duality).

ENF for CTL

Given atomic propositions *AP*, CTL formulae in *existential normal form* are given by:

```
\Phi ::= \mathsf{true} \mid a \mid \Phi \land \Psi \mid \neg \Phi \mid \exists \bigcirc \Phi \mid \exists (\Phi \cup \Psi) \mid \exists \Box \Phi
```

where $a \in AP$.

Every CTL formula can be rewritten in ENF... but the translation can cause an exponential blowup (because of the rewrite rule for $\forall U$).

Chapter 4: Computation tree logic

Mickael Randour

Positive normal form (PNF)

Weak-until PNF for CTL (1/2)

Goal

Retain the full expressiveness of CTL but permit *only negations of atomic propositions*.

Weak-until PNF for LTL

Given atomic propositions *AP*, CTL state formulae in *weak-until* positive normal form are given by:

$$\Phi ::= \mathsf{true} \mid \mathsf{false} \mid a \mid \neg a \mid \Phi \land \Psi \mid \Phi \lor \Psi \mid \exists \phi \mid \forall \phi$$

where $a \in AP$ and path formulae are given by:

$$\phi ::= \bigcirc \Phi \mid \Phi \, \mathsf{U} \, \Psi \mid \Phi \, \mathsf{W} \, \Psi.$$
Positive normal form (PNF) Weak-until PNF for CTL (2/2)

Every CTL formula can be rewritten in PNF... but the translation can cause an exponential blowup (because of the rewrite rules for $\forall U$ and $\exists U$).

 \implies As for LTL, can be avoided by introducing a "release" operator.

$$\begin{array}{lll} \exists (\Phi \mathsf{R} \Psi) & \equiv & \neg \forall ((\neg \Phi) \, \mathsf{U} \, (\neg \Psi)) \\ \forall (\Phi \mathsf{R} \Psi) & \equiv & \neg \exists ((\neg \Phi) \, \mathsf{U} \, (\neg \Psi)) \end{array}$$

1 CTL: a specification language for BT properties

2 CTL model checking

3 CTL vs. LTL

CTL model checking

Decision problem

Definition: CTL model checking problem

Given a TS \mathcal{T} and a CTL formula Φ , decide if $\mathcal{T} \models \Phi$ or not.

 \implies Model checking algorithm via recursive computation of the satisfaction set $Sat(\Phi)$.

Intuition.

- \triangleright Use the *parse tree* of Φ (decomposition in subformulae).
- ▷ Compute Sat(a) for all leaves in the tree ($a \in AP$).
- Compute satisfaction sets of nodes in a bottom-up fashion, using the satisfactions sets of their children.
- ▷ In the root, obtain $Sat(\Phi)$ and check that $I \subseteq Sat(\Phi)$ to conclude whether $\mathcal{T} \models \Phi$ or not.

CTL formula $\Phi = c \lor \exists \Diamond (a \land b).$

 \implies We have to check that $I = \{s_1, s_2\} \subseteq Sat(\Phi)$. Parse tree of Φ :

 \implies Finally $I \subseteq Sat(\Phi)$, thus $\mathcal{T} \models \Phi$.

Chapter 4: Computation tree logic

Formulae in ENF

Throughout this section, we assume formulae are written in ENF.

Reminder: ENF for CTL

Given atomic propositions AP, CTL formulae in *existential normal* form are given by:

$$\Phi ::= \mathsf{true} \mid a \mid \Phi \land \Psi \mid \neg \Phi \mid \exists \bigcirc \Phi \mid \exists (\Phi \cup \Psi) \mid \exists \Box \Phi$$

where $a \in AP$.

Assume we have $Sat(\Phi)$ and $Sat(\Psi)$, we need algorithms for:

- $Sat(\Phi \land \Psi)$ and $Sat(\neg \Phi)$: easy, intersection and complement.
- $Sat(\exists \bigcirc \Phi), Sat(\exists (\Phi \cup \Psi)) \text{ and } Sat(\exists \Box \Phi).$

In practice, one can either rewrite any formula in ENF (but with a potential blow-up), or design specific algorithms to deal with \forall quantifiers (based on similar ideas).

Chapter 4: Computation tree logic

Main algorithm

Key concept: bottom-up traversal of the parse tree of Φ . For formulae in ENF,

- \triangleright leaves can be true or $a \in AP$,
- ▷ inner nodes can be \neg , \land , \exists \bigcirc , \exists U, or \exists \Box .

Each node represents a subformula Ψ of Φ and $Sat(\Psi)$ is the set of states where Ψ holds.

Intuition

When we compute $Sat(\Psi)$ in a node, it is as if we label all states of $Sat(\Psi)$ with a new proposition a_{Ψ} such that $a_{\Psi} \in L(s)$ iff $s \models \Psi$. This label can then be used to compute the parent formula.

E.g., computing $Sat(\exists \bigcirc \Psi)$ is now computing $Sat(\exists \bigcirc a_{\Psi})$: there is no need to reconsider the child formula Ψ , just the corresponding labeling of states.

Chapter 4: Computation tree logic

Characterization of Sat(1/2)

Let $\mathcal{T} = (S, Act, \longrightarrow, I, AP, L)$ be a TS without terminal state. For all CTL formulae Φ , Ψ over AP, we have:

$$\begin{aligned} Sat(\mathsf{true}) &= S\\ Sat(\mathsf{a}) &= \{s \in S \mid \mathsf{a} \in L(s)\} \text{ for } \mathsf{a} \in AP\\ Sat(\Phi \land \Psi) &= Sat(\Phi) \cap Sat(\Psi)\\ Sat(\neg \Phi) &= S \setminus Sat(\Phi)\\ Sat(\exists \bigcirc \Phi) &= \{s \in S \mid Post(s) \cap Sat(\Phi) \neq \emptyset\}\\ &\hookrightarrow \text{All states that have a successor in } Sat(\Phi). \end{aligned}$$

Characterization of Sat(2/2)

 $Sat(\exists (\Phi \cup \Psi))$ is the smallest subset T of S such that

- 1 $Sat(\Psi) \subseteq T$,
- $2 \ s \in Sat(\Phi) \land Post(s) \cap T \neq \emptyset \implies s \in T.$

 \hookrightarrow (1) must hold because $\Phi \cup \Psi$ is satisfied directly, and (2) says that if Φ holds now and there exists a successor where $\exists (\Phi \cup \Psi)$ holds, then $\exists (\Phi \cup \Psi)$ holds also now (cf. expansion law).

 $Sat(\exists \Box \Phi)$ is the largest subset T of S such that

- 1 $T \subseteq Sat(\Phi)$,
- $2 s \in T \implies Post(s) \cap T \neq \emptyset.$

 \hookrightarrow (1) must hold because states outside $Sat(\Phi)$ directly falsify $\exists \Box \Phi$, and (2) says that if $\exists \Box \Phi$ holds now, then there must exist a successor where $\exists \Box \Phi$ still holds (cf. expansion law).

Computation of Sat: algorithm (1/3)

```
Input: TS \mathcal{T} = (S, Act, \rightarrow, I, AP, L) and CTL formula \Phi in ENF
Output: Sat(\Phi) = \{s \in S \mid s \models \Phi\}
   if \Phi = true then
       return S
   else if \Phi = a \in AP then
       return \{s \in S \mid a \in L(s)\}
   else if \Phi = \Psi_1 \wedge \Psi_2 then
       return Sat(\Psi_1) \cap Sat(\Psi_2)
   else if \Phi = \neg \Psi then
       return S \setminus Sat(\Psi)
   else if \Phi = \exists \bigcirc \Psi then
       return \{s \in S \mid Post(s) \cap Sat(\Psi) \neq \emptyset\}
```

Computation of Sat: algorithm (2/3)

else if
$$\Phi = \exists (\Psi_1 \cup \Psi_2)$$
 then
 $T := Sat(\Psi_2) \quad // \text{ smallest fixed point computation}$
while $A := \{s \in Sat(\Psi_1) \setminus T \mid Post(s) \cap T \neq \emptyset\} \neq \emptyset$ do
 $T := T \cup A$
return T

 \hookrightarrow We iteratively compute an **increasing** sequence of sets T_i s.t. $T_0 = Sat(\Psi_2)$ and $T_{i+1} = T_i \cup \{s \in Sat(\Psi_1) \mid Post(s) \cap T_i \neq \emptyset\}$, i.e., T_i represents all states that can reach $Sat(\Psi_2)$ in at most isteps via a path of states in $Sat(\Psi_1)$.

Computation of Sat: algorithm (3/3)

else if
$$\Phi = \exists \Box \Psi$$
 then
 $T := Sat(\Psi) \quad // \text{ largest fixed point computation}$
while $A := \{s \in T \mid Post(s) \cap T = \emptyset\} \neq \emptyset$ do
 $T := T \setminus A$
return T

 \hookrightarrow We iteratively compute a **decreasing** sequence of sets T_i s.t. $T_0 = Sat(\Psi)$ and $T_{i+1} = T_i \cap \{s \in Sat(\Psi) \mid Post(s) \cap T_i \neq \emptyset\}$, i.e., T_i represents all states from which there exists a path staying in $Sat(\Psi)$ for at least *i* steps. CTL model checking

CTL vs. LTL

CTL* 000000000

Examples

Chapter 4: Computation tree logic

Examples

 $\Phi = \exists \diamondsuit ((a \lor c) \land \neg b) (2/2)$

We obtain $Sat(\Phi) = \exists \Psi_4 \cup \Psi_3$ via smallest fixed point computation:

$$\begin{array}{l} \triangleright \ \ T_0 = Sat(\Psi_3) = \{s_3\} \\ \triangleright \ \ T_1 = T_0 \cup \{s \in Sat(\Psi_4) \mid Post(s) \cap T_0 \neq \emptyset\} = \{s_2, s_3\} \\ \triangleright \ \ T_2 = T_1 \cup \{s \in Sat(\Psi_4) \mid Post(s) \cap T_1 \neq \emptyset\} = \{s_2, s_3, s_5\} \\ \triangleright \ \ T_3 = T_2 \cup \{s \in Sat(\Psi_4) \mid Post(s) \cap T_2 \neq \emptyset\} = \{s_2, s_3, s_5, s_6\} \\ \triangleright \ \ T_4 = T_3 \cup \{s \in Sat(\Psi_4) \mid Post(s) \cap T_3 \neq \emptyset\} = T_3 = Sat(\Phi) \\ I = \{s_3, s_5, s_6\} \subseteq Sat(\Phi) \implies \mathcal{T} \models \Phi = \exists \Diamond ((a \lor c) \land \neg b) \end{array}$$

Chapter 4: Computation tree logic

CTL model checking

CTL vs. LTL

CTL* 000000000

Examples

Chapter 4: Computation tree logic

Complexity of CTL model checking

Clever implementations of algorithms for $\exists (\Psi_1 \cup \Psi_2)$ and $\exists \Box \Psi$ take time $\mathcal{O}(|S| + | \longrightarrow |)$.

 \implies See the book for detailed algorithms.

Main algorithm to compute Sat(Φ) is a bottom-up traversal of the parse tree: O(|Φ|).

Complexity of the algorithm

The time complexity is $\mathcal{O}(|\mathcal{T}| \cdot |\Phi|)$.

- \implies CTL model checking is in polynomial time!
- \implies So... much more efficient than LTL which is PSPACE-complete?
- \implies Not really... need to consider the whole picture, including succinctness!

Chapter 4: Computation tree logic

1 CTL: a specification language for BT properties

2 CTL model checking

3 CTL vs. LTL

Incomparable logics

We have seen that:

- some properties are expressible in LTL but not in CTL (e.g., $\phi = \Diamond \Box a$),
- some properties are expressible in CTL but not in LTL (e.g., $\Phi = \forall \Box \exists \diamondsuit a$),
- some properties can be expressed in both logics (e.g.,
 - $\phi = \Box \Diamond a$ is equivalent to $\Phi = \forall \Box \forall \Diamond a$).

Can we characterize the intersection?

Chapter 4: Computation tree logic

Equivalent formulae

Recall the notion of equivalent formulae.

Definition: equivalent formulae

CTL formula Φ and LTL formula ϕ over AP are equivalent, denoted $\Phi \equiv \phi$ if for all TS \mathcal{T} , $\mathcal{T} \models \Phi \iff \mathcal{T} \models \phi$.

Here is a way to know if a CTL formula admits an equivalent one in LTL.

Criterion for transformation from CTL to LTL

Let Φ be a CTL formula, and ϕ be the LTL formula obtained by eliminating all path quantifiers from Φ . Then, either $\Phi \equiv \phi$ or there exists no LTL formula equivalent to Φ .

Comparing LTL and CTL: examples (1/2)

- We proved that $\phi = \Box \diamondsuit a \equiv \Phi = \forall \Box \forall \diamondsuit a$, and indeed, ϕ is obtained from Φ by removing all quantifiers.
- We argued that $\Phi = \forall \Diamond \forall \Box a \neq \phi = \Diamond \Box a$. Hence, there is no equivalent to Φ in LTL.

Comparing LTL and CTL: examples (2/2)

Consider formula $\Phi = \forall \diamondsuit (a \land \forall \bigcirc a)$ and its potential LTL equivalent, $\phi = \diamondsuit (a \land \bigcirc a)$.

- $\mathcal{T} \models \phi$ because $s_1 \models \phi$:
 - ▷ All paths in $Paths(s_1)$ contain $s_1 \rightarrow s_2$, or $s_5 \rightarrow s_1$, or both.
 - ▷ Any suffix $s_1s_2...$ satisfies $(a \land \bigcirc a)$, and so does any suffix $s_5s_1...$
 - \triangleright Hence all paths satisfy ϕ .
- *T* ⊭ Φ because of path s₁s₂s₃^ω.
 ▷ None of s₁, s₂ and s₃ satisfies (a ∧ ∀○ a) (look at s₄ for s₁).

 \implies CTL formula $\Phi = \forall \diamondsuit (a \land \forall \bigcirc a)$ has no LTL equivalent.

Model checking efficiency

Let $\mathcal{T} = (S, Act, \longrightarrow, I, AP, L)$ be a TS, and Φ (resp. ϕ) a CTL (resp. LTL) formula over AP.

- Model checking Φ requires linear time in both the model and the formula: O(|T| · |Φ|).
- Model checking φ requires linear time in the model but exponential time in the formula: O(|T|) · 2^{O(|Φ|)}.

Hence, CTL model checking is more efficient, right?

No!

Because LTL can be exponentially more succinct!

 \hookrightarrow That is, given a CTL formula, the LTL equivalent can be exponentially shorter.

LTL can be exponentially more succinct than CTL Proof sketch (1/3)

- Take an NP-complete problem and show that it can be solved by model checking a polynomial-size LTL formula on a polynomial-size model.
- 2 Show that the LTL formula has an equivalent in CTL (of exponential size).
- 3 If an equivalent CTL formula of *polynomial size* existed, we would be able to solve the NP-complete problem in polynomial time, hence to prove that P = NP.

Hence, unless P = NP, some properties can be expressed in LTL through exponentially shorter formulae than in CTL.

Chosen problem: deciding the existence of a Hamiltonian path (i.e., visiting each vertex exactly once) in a directed graph.

CTL vs. LTL

CTL* 000000000

LTL can be exponentially more succinct than CTL Proof sketch (2/3)

Transition system.

Directed graph.

Encoding of the problem:

- Make all vertices initial states and add an additional state g reachable from all other states.
- ▷ Label of vertex $v_i = p_i$, label of $g = p_g$.
- ▷ Let *n* be the number of vertices of the graph. Consider LTL formula $\phi = (\Diamond p_1 \land \ldots \land \Diamond p_n) \land \bigcirc^n p_g$.
- \triangleright Paths satisfying ϕ in the TS correspond to Hamiltonian paths in the graph.

Chapter 4: Computation tree logic

LTL can be exponentially more succinct than CTL

Proof sketch (3/3)

Reduction:

 $\,\vartriangleright\,$ The graph contains a Hamiltonian path iff $\mathcal{T}\not\models \neg\phi$ with

$$\phi = (\Diamond p_1 \land \ldots \land \Diamond p_n) \land \bigcirc^n p_g.$$

- $\triangleright~$ Observe that TS ${\cal T}$ and formula ϕ are both of polynomial size.
- No contradiction with NP-completeness since LTL model checking is PSPACE-complete.

Encoding in CTL?

> Yes but enumerates all possible Hamiltonian paths! E.g.,

$$\Phi = (p_1 \land \exists \bigcirc (p_2 \land \exists \bigcirc (p_3 \land \exists \bigcirc p_4)))$$

$$\lor (p_1 \land \exists \bigcirc (p_2 \land \exists \bigcirc (p_4 \land \exists \bigcirc p_3)))$$

$$\lor (p_1 \land \exists \bigcirc (p_3 \land \exists \bigcirc (p_2 \land \exists \bigcirc p_4))) \lor \dots$$

$$\Longrightarrow \text{Exponential formula: } |\Phi| = \mathcal{O}(n \cdot n!)$$

$$\Longrightarrow \text{Dopolynomial encoding can exist unless } P = NP$$

$$because \text{ CTL model checking is in } P.$$

Chapter 4: Computation tree logic

Other differences between LTL and CTL

Fairness

LTL

- Unconditional, strong and weak fairness can be formalized in LTL.
- Fairness can be incorporated into classical LTL model checking: $\mathcal{T} \models_{fair} \phi$ iff $\mathcal{T} \models (fair \rightarrow \phi)$.

CTL

- Most fairness constraints cannot be encoded in CTL. E.g., strong fairness □◊a → □◊b is equivalent to ◊□¬a ∨ □◊b and persistence (◊□¬a) is not expressible in CTL.
- Need for $\forall (fair \rightarrow \phi)$ and $\exists (fair \land \phi)$ but not possible in CTL (no connectives on path formulae).

 \implies In CTL, fairness requires specific techniques.

 \implies Adapt the semantics of $\exists \phi$ and $\forall \phi$ to interpret them on **fair** paths, with fairness constraint seen as an LTL formula over CTL state formulae.

 \implies Not discussed here. See the book for more.

Other differences between LTL and CTL

Implementation relation

LTL

- LTL is preserved by trace inclusion (PSPACE-c.).
- (Bi)simulation is a sound but incomplete alternative, computable in polynomial time.

(bi)simulation $\underset{\texttt{trace inclusion}}{\Downarrow} \texttt{f}$

CTL

- Bisimulation preserves **full** CTL.
- Simulation preserves the universal fragment of CTL.
- $\, \hookrightarrow \, \text{ Allows only quantifier } \forall.$
 - Equivalently, simulation preserves the existential fragment of CTL.

 \Rightarrow Different logics, different implementation relations.

LTL vs. CTL

Wrap-up

Notion of time	Linear	Branching
Behavior in state s	path-based: Traces(s)	state-based: computation tree of s
Temporal logic	LTL: path formulae ϕ $s \models \phi$ iff $\forall \pi \in Paths(s), \ \pi \models \phi$	CTL: state formulae Φ path quantifiers $\exists \phi$, $\forall \phi$
Model checking complexity	PSPACE-complete	Р
Implementation relation	trace inclusion and equivalence (PSPACE-complete)	(bi)simulation (polynomial time)

1 CTL: a specification language for BT properties

2 CTL model checking

3 CTL vs. LTL

Why?

Because LTL and CTL are incomparable.

- ▷ CTL* extends CTL by allowing arbitrary nesting of path quantifiers with temporal operators ○ and U.
- ▷ CTL* subsumes both CTL and LTL.

 \implies Here, we only take a quick glance at CTL*. For full discussion, including model checking algorithms, see the book.

CTL* syntax

Core syntax

CTL^* syntax

Given the set of atomic propositions AP, CTL^* state formulae are formed according to the following grammar:

 $\Phi ::= \mathsf{true} \mid \textit{a} \mid \Phi \land \Psi \mid \neg \Phi \mid \exists \phi$

where $a \in AP$ and ϕ is a path formula. CTL^{*} path formulae are formed according to the following grammar:

$$\phi ::= \Phi \mid \phi \land \psi \mid \neg \phi \mid \bigcirc \phi \mid \phi \, \mathsf{U} \, \psi$$

where Φ is a state formula and $\phi,\,\psi$ are path formulae.

As for LTL and CTL, we obtain derived propositional logics operators \lor , \rightarrow ,... Moreover,

 $\diamondsuit \phi = \mathsf{true}\,\mathsf{U}\,\phi \quad \mathsf{and} \quad \Box \phi = \neg \diamondsuit \neg \phi \quad \mathsf{and} \quad \forall \phi = \neg \exists \neg \phi$

Chapter 4: Computation tree logic

CTL* syntax Examples (1/2)

CTL* syntax reminder

$$\Phi ::= \mathsf{true} \mid \textit{a} \mid \Phi \land \Psi \mid \neg \Phi \mid \exists \phi \quad \phi ::= \Phi \mid \phi \land \psi \mid \neg \phi \mid \bigcirc \phi \mid \phi \cup \psi$$

• Is $\Phi = \exists \bigcirc a$ a valid CTL* formula? (yes for CTL)

▷ Yes, because $\phi = \bigcirc a$ is a valid path formula, hence $\Phi = \exists \phi$ is a valid state formula.

- Is $\Phi = a \wedge b$ a valid CTL* formula? (yes for CTL)
 - \triangleright Yes, because $\Psi_1 = a$ and $\Psi_2 = b$ are valid state formulae, hence $\Phi = \Psi_1 \land \Psi_2$ is a valid state formula.
- Is Φ = ∀(a ∧ ∃ ∩ b) a valid CTL* formula? (no for CTL)
 Yes, because Ψ = a ∧ ∃ ∩ b is a valid state formula and any state formula Ψ can be taken as a path formula φ = Ψ.

CTL* syntax Examples (2/2)

CTL* syntax reminder

 $\Phi \mathrel{::=} \mathsf{true} \mid \textit{a} \mid \Phi \land \Psi \mid \neg \Phi \mid \exists \phi \quad \phi \mathrel{::=} \Phi \mid \phi \land \psi \mid \neg \phi \mid \bigcirc \phi \mid \phi \, \mathsf{U} \, \psi$

- Is $\Phi = \exists ((\forall \bigcirc a) \cup (a \land b))$ a valid CTL* formula? (yes for CTL)
 - ▷ Yes, because $\Psi_1 = \forall \bigcirc a$ and $\Psi_2 = a \land b$ are valid state formulae, hence $\phi = \Psi_1 \cup \Psi_2$ is a valid path formula, hence $\Phi = \exists \phi$ is a valid state formula.
- Is $\Phi = \exists \bigcirc (a \cup b)$ a valid CTL* formula? (no for CTL)
 - ▷ **Yes**, because $\phi = a \cup b$ is a valid *path* formula and we can use it directly after \bigcirc without an additional quantifier in CTL^{*}.

Semantics

The semantics of CTL* follows naturally from the one of CTL.

Any CTL formula is also a CTL* formula.

 \triangleright Indeed, the syntax of CTL is a subset of the one of CTL^{*}.

• Any LTL formula ϕ has an equivalent CTL* formula.

$$\triangleright \ \ {\sf We have} \ {\cal T} \models \phi \ \Longleftrightarrow \ {\cal T} \models \Phi = \forall \phi.$$

⇒ CTL* is strictly more expressive than LTL and CTL, i.e., there exist CTL* formulae that cannot be expressed neither in LTL nor in CTL.

Examples of formulae belonging to the different sets

- LTL formula $\phi = \Diamond \Box a$ cannot be expressed in CTL.
- CTL formula $\Phi = \forall \Box \exists \Diamond a$ cannot be expressed in LTL.
- LTL formula $\phi = \Box \diamondsuit a$ is equivalent to CTL $\Phi = \forall \Box \forall \diamondsuit a$.
- CTL* formula Φ = ∀◊□a ∧ ∀□∃◊b is not expressible in LTL nor in CTL.

CTL* model checking

- The algorithm for CTL* combines the respective algorithms for LTL and CTL.
- Its complexity is dominated by the complexity of LTL model checking.

Complexity of the algorithm

The time complexity is $\mathcal{O}(|\mathcal{T}|) \cdot 2^{\mathcal{O}(|\Phi|)}$.

Complexity of the model checking problem for CTL*

The CTL* model checking problem is PSPACE-complete.

\Longrightarrow Since LTL model checking is reducible to CTL* model checking.
Implementation relations

Similarly to CTL,

- bisimulation preserves full CTL*;
- simulation preserves the existential and universal fragments of CTL*.

References I

C. Baier and J.-P. Katoen. Principles of model checking.

MIT Press, 2008.