Formal Methods for System Design

Chapter 3: Linear temporal logic

Mickael Randour

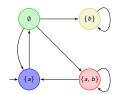
Mathematics Department, UMONS

September 2023

- 1 LTL: a specification language for LT properties
- 2 Büchi automata: automata on infinite words
- 3 LTL model checking

- 1 LTL: a specification language for LT properties
- 2 Büchi automata: automata on infinite words
- 3 LTL model checking

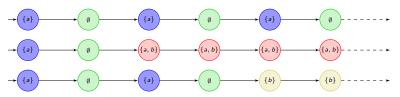
Linear time semantics: a reminder



TS T with state labels $AP = \{a, b\}$ (state and action names are omitted).

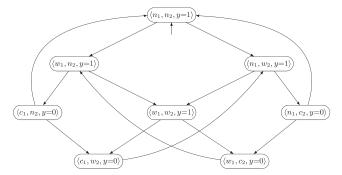
From now on, we assume **no terminal state**.

- Linear time semantics deals with *traces* of executions.
 - \triangleright The language of infinite words described by \mathcal{T} .
 - ▶ E.g., do all executions eventually reach (1)? No.



Safety

LTL



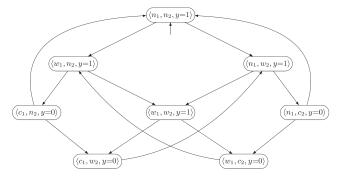
TS for semaphore-based mutex [BK08] (Ch. 2).

Ensure that $\langle c_1, c_2, y = ... \rangle \notin Reach(\mathcal{T}(PG_1 \parallel PG_2))$ or equivalently that $\nexists \pi \in Paths(\mathcal{T}), \langle c_1, c_2, y = \dots \rangle \in \pi$. → Satisfied.

Safety

LTL

000000000



TS for semaphore-based mutex [BK08] (Ch. 2).

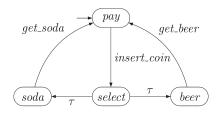
For model checking, we like to use *labels* and *traces*.

- $\triangleright AP = \{crit_1, crit_2\}, \text{ natural labeling.}$
- \triangleright Ensure that $\nexists \sigma \in Traces(\mathcal{T}), \{crit_1, crit_2\} \in \sigma$.

Liveness

000000000

LTL

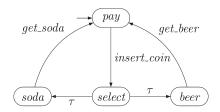


Beverage vending machine [BK08] (Ch. 2).

Ensure that the machine delivers a *drink* infinitely often.

- $\triangleright AP = \{paid, drink\}, \text{ natural labeling.}$
- $\triangleright \ \forall \ \sigma \in Traces(\mathcal{T})$, for all position i along σ , label drink must appear in the future.
 - ⇒ Will be formalized thanks to LTL.
- → Satisfied. Recall we consider infinite executions.

Liveness



Beverage vending machine [BK08] (Ch. 2).

What if we ask that the machine delivers a beer infinitely often.

- $\triangleright AP = \{paid, soda, beer\},$ natural labeling.
- $\lor \forall \sigma \in Traces(\mathcal{T})$, for all position *i* along σ , label *beer* must appear in the future.
- \hookrightarrow **Not satisfied.** E.g., $\sigma = (\emptyset \{paid\} \{paid, soda\})^{\omega}$.

Safety vs. liveness

Informally, safety means "something bad never happens."

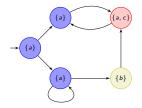
- ⇒ Can easily be satisfied by doing nothing!
- Needs to be complemented with liveness, i.e., "something good will happen."

Finite vs. infinite time

Safety is violated by *finite* executions (i.e., the prefix up to seeing a bad state) whereas liveness is violated by *infinite* ones (witnessing that the good behavior never occurs).

⇒ For more about the safety/liveness taxonomy, see the book.

Persistence



Ensure that a property eventually holds forever.

- ▶ E.g., from some point on, a holds but b does not.
- → Satisfied. Indeed,

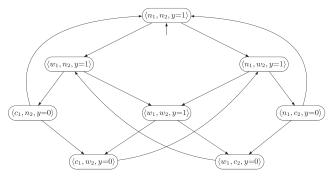
$$Traces(\mathcal{T}) = \{a\} \ [\{a\}^{\omega} \mid (\{a\} \{a,c\})^{\omega} \mid \{a\}^{+} \{b\} (\{a,c\} \{a\})^{\omega}] \ .$$

 \implies Ultimately periodic traces where b is false and a is true, at all steps after some point.

Fairness (1/4)

000000000

LTL



TS for semaphore-based mutex [BK08] (Ch. 2).

Ensure that both processes get *fair access* to the critical section.

What is fairness?

Fairness (2/4)

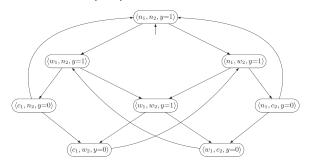
Different types of fairness constraints.

- Unconditional fairness. E.g., "every process gets access infinitely often."
- **Strong fairness.** E.g., "every process that requests access infinitely often gets access infinitely often."
- Weak fairness. E.g., "every process that continuously requests access from some point on gets access infinitely often."

⇒ All forms can be formalized in LTL.

000000000

LTL



TS for semaphore-based mutex [BK08] (Ch. 2).

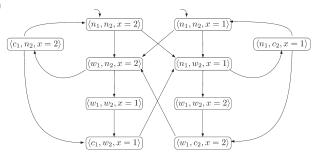
The semaphore-based mutex is **not fair** in any sense. We have seen that starvation is possible. E.g., execution

$$\langle n_1, n_2, y = 1 \rangle \longrightarrow (\langle w_1, n_2, y = 1 \rangle \longrightarrow \langle w_1, w_2, y = 1 \rangle \longrightarrow \langle w_1, c_2, y = 0 \rangle)^{\omega}$$

sees process 1 asking continuously but never getting access (hence not even weakly fair).

Fairness (4/4)

LTL



TS for Peterson's mutex [BK08] (Ch. 2).

Peterson's mutex is strongly fair. We saw that it has bounded waiting.

- ▶ A process requesting access waits at most one turn.
- \hookrightarrow Infinitely frequent requests \Longrightarrow infinitely frequent access. \Longrightarrow Strong fairness.

Linear Temporal Logic

LT property

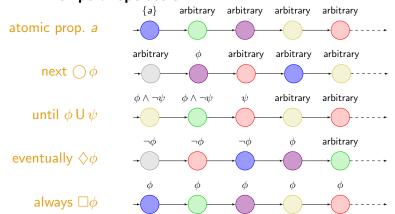
Essentially, a set of acceptable traces over AP.

- Often difficult to describe explicitly.
- ▶ Adequate formalism needed for model checking.

⇒ Linear Temporal Logic (LTL): propositional logic + temporal operators.

LTL in a nutshell

- Atomic propositions $a \in AP$ (represented as (a), (b), etc).
- Boolean combinations of formulae: $\neg \phi$, $\phi \land \psi$, $\phi \lor \psi$.
- Temporal operators.



LTL syntax

Core syntax

LTL syntax

Given the set of atomic propositions AP, LTL formulae are formed according to the following grammar:

$$\phi ::= \text{true} \mid a \mid \phi \land \psi \mid \neg \phi \mid \bigcirc \phi \mid \phi \cup \psi$$

where $a \in AP$.

 $\oint \mathbf{U} \psi$ requires that ψ holds at some point! (i.e., ϕ forever does not suffice)

LTL syntax

Derived operators

- \triangleright Weak until \leadsto until that does not require ψ to be reached.
- ightharpoonup Release $\leadsto \psi$ must hold up to the point where ϕ releases it, or forever if ϕ never holds.

LTL syntax

Precedence order

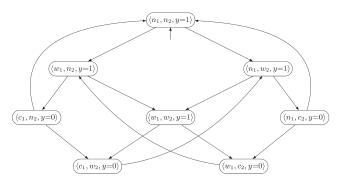
Precedence order:

- □ unary operators before binary ones,
- ightarrow \neg and \bigcirc equally strong,
- \triangleright U before \land , \lor and \rightarrow .

Safety

000000000

LTL



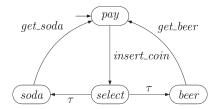
TS for semaphore-based mutex [BK08] (Ch. 2).

- $\triangleright AP = \{crit_1, crit_2\}, \text{ natural labeling.}$
- \triangleright Ensure that $\nexists \sigma \in \mathit{Traces}(\mathcal{T}), \{\mathit{crit}_1, \mathit{crit}_2\} \in \sigma$.
- $\hookrightarrow \neg \lozenge (crit_1 \land crit_2)$ or equivalently $\square (\neg crit_1 \lor \neg crit_2)$.

Liveness

000000000

LTL

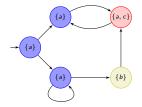


Beverage vending machine [BK08] (Ch. 2).

- $\triangleright AP = \{paid, drink\}, \text{ natural labeling.}$
- $\triangleright \forall \sigma \in Traces(\mathcal{T})$, for all position i along σ , label drink must appear in the future.
- $\hookrightarrow \Box \Diamond drink.$

"infinitely often"

Persistence



Ensure that a property eventually holds forever.

▶ E.g., from some point on, a holds but b does not.

$$\hookrightarrow \Diamond \Box (a \land \neg b).$$

⇒ "eventually always"

Fairness

Assume k processes and $AP = \{wait_1, \dots, wait_k, crit_1, \dots, crit_k\}$.

■ Unconditional fairness. E.g., "every process gets access infinitely often."

$$\hookrightarrow \bigwedge_{1 \le i \le k} \Box \Diamond crit_i$$
.

■ **Strong fairness.** E.g., "every process that requests access infinitely often gets access infinitely often."

$$\hookrightarrow \bigwedge_{1 \le i \le k} (\Box \Diamond wait_i \to \Box \Diamond crit_i).$$

Weak fairness. E.g., "every process that continuously requests access from some point on gets access infinitely often."

$$\hookrightarrow \bigwedge_{1 \le i \le k} (\lozenge \square wait_i \to \square \lozenge crit_i).$$

LTL semantics

Over words (1/2)

Given propositions AP and LTL formula ϕ , the associated LT property is the language of words:

$$Words(\phi) = \{ \sigma = A_0 A_1 A_2 \dots \in (2^{AP})^{\omega} \mid \sigma \models \phi \}$$

where \models is the smallest relation satisfying:

$$\begin{split} \sigma &\models \mathsf{true} &\quad \textit{Recall letters are subsets of } AP \\ \sigma &\models a &\quad \mathsf{iff} \quad a \in A_0 \\ \sigma &\models \phi \land \psi \quad \mathsf{iff} \quad \sigma \models \phi \text{ and } \sigma \models \psi \\ \sigma &\models \neg \phi \quad \mathsf{iff} \quad \sigma \not\models \phi \\ \sigma &\models \bigcirc \phi \quad \mathsf{iff} \quad \sigma[1..] = A_1 A_2 \ldots \models \phi \\ \sigma &\models \phi \ \mathsf{U} \ \psi \quad \mathsf{iff} \quad \exists j \geq 0, \ \sigma[j..] \models \psi \text{ and } \forall \ 0 \leq i < j, \ \sigma[i..] \models \phi \end{split}$$

ITI semantics

Over words (2/2)

LTL

Other common operators:

$$\begin{array}{lll} \sigma \models \Diamond \phi & \text{iff} & \exists j \geq 0, \ \sigma[j..] \models \phi \\ \sigma \models \Box \phi & \text{iff} & \forall j \geq 0, \ \sigma[j..] \models \phi \\ \sigma \models \Box \Diamond \phi & \text{iff} & \forall j \geq 0, \ \exists i \geq j, \ \sigma[i..] \models \phi \\ \sigma \models \Diamond \Box \phi & \text{iff} & \exists j \geq 0, \ \forall i \geq j, \ \sigma[i..] \models \phi \end{array}$$

LTL semantics

Over transition systems

Let $\mathcal{T} = (S, Act, \longrightarrow, I, AP, L)$ be a TS and ϕ an LTL formula over AP.

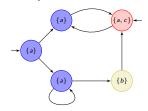
- For $\pi \in Paths(\mathcal{T})$, $\pi \models \phi$ iff $trace(\pi) \models \phi$.
- For $s \in S$, $s \models \phi$ iff $\forall \pi \in Paths(s)$, $\pi \models \phi$.
- TS \mathcal{T} satisfies ϕ , denoted $\mathcal{T} \models \phi$ iff $\mathit{Traces}(\mathcal{T}) \subseteq \mathit{Words}(\phi)$.

It follows that $\mathcal{T} \models \phi$ iff $\forall s_0 \in I$, $s_0 \models \phi$.

Example

0000000000

LTL



Notice the added initial state.

$$\mathcal{T} \not\models \Box a$$

$$\mathcal{T} \not\models \diamondsuit b$$

$$\mathcal{T} \models a \otimes b$$

$$\mathcal{T} \models \Box (b \to \Box \diamondsuit c)$$

$$\mathcal{T} \models \Diamond \Box a$$

$$\mathcal{T} \models \bigcirc (a \land \neg c)$$

$$\mathcal{T} \not\models a \cup b$$

$$\mathcal{T} \models \Box (c \rightarrow \bigcirc a)$$

$$\mathcal{T} \not\models b R a$$

$$\mathcal{T} \models \Box \neg c \rightarrow \neg \Diamond b$$

$$\mathcal{T} \models b \rightarrow \Box c$$

$$\mathcal{T} \models \Box(b \to \Box \Diamond c) \qquad \mathcal{T} \models b \to \Box c \qquad \mathcal{T} \not\models \bigcirc \bigcirc (b \lor c) \lor \Box a$$

⇒ Blackboard solution.

Semantics of negation

Negation for paths

For $\pi \in Paths(\mathcal{T})$ and an LTL formula ϕ over AP,

$$\pi \not\models \phi \Longleftrightarrow \pi \models \neg \phi$$

because $Words(\neg \phi) = (2^{AP})^{\omega} \setminus Words(\phi)$.

Semantics of negation

Transition systems

LTL

Negation for TSs

For TS $\mathcal{T} = (S, Act, \longrightarrow, I, AP, L)$ and an LTL formula ϕ over AP:

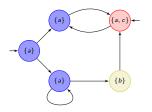
```
We have that \mathcal{T} \not\models \phi iff Traces(\mathcal{T}) \not\subseteq Words(\phi)
                                          iff Traces(\mathcal{T}) \setminus Words(\phi) \neq \emptyset
                                          iff
                                                   Traces(\mathcal{T}) \cap Words(\neg \phi) \neq \emptyset
```

But it may be the case that $\mathcal{T} \not\models \phi$ and $\mathcal{T} \not\models \neg \phi$ if

 $Traces(\mathcal{T}) \cap Words(\neg \phi) \neq \emptyset$ and $Traces(\mathcal{T}) \cap Words(\phi) \neq \emptyset$.

Semantics of negation

Example



We saw that $\mathcal{T} \not\models \Diamond b$.

Do we have $\mathcal{T} \models \neg \diamondsuit b \equiv \Box \neg b$?

 \Longrightarrow No. Because trace $\sigma = \{a\}^2 \{b\} (\{a,c\}\{a\})^\omega$ satisfies $\lozenge b$.

Definition

0000000000

LTL

Equivalence of LTL formulae

LTL formulae ϕ and ψ are equivalent, denoted $\phi \equiv \psi$, if

$$Words(\phi) = Words(\psi).$$

⇒ Let us review some computational rules.

Equivalence of LTL formulae

Duality, idempotence, absorption

Duality.

$$\neg \Box \phi \equiv \Diamond \neg \phi
\neg \Diamond \phi \equiv \Box \neg \phi
\neg \bigcirc \phi \equiv \bigcirc \neg \phi$$

Idempotence.

$$\Box\Box\phi \quad \equiv \quad \Box\phi$$

$$\diamondsuit\diamondsuit\phi \quad \equiv \quad \diamondsuit\phi$$

$$\phi \cup (\phi \cup \psi) \quad \equiv \quad \phi \cup \psi$$

$$(\phi \cup \psi) \cup \psi \quad \equiv \quad \phi \cup \psi$$

Absorption.

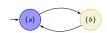
Equivalence of LTL formulae

Distribution

Distribution.

$$\bigcirc (\phi \cup \psi) \equiv (\bigcirc \phi) \cup (\bigcirc \psi)
\Diamond (\phi \vee \psi) \equiv \Diamond \phi \vee \Diamond \psi
\Box (\phi \wedge \psi) \equiv \Box \phi \wedge \Box \psi$$

■ But...



$$\mathcal{T} \models \Diamond a \wedge \Diamond b \qquad \text{but} \quad \mathcal{T} \not\models \Diamond (a \wedge b)$$

$$\mathcal{T} \models \Box (a \vee b) \qquad \text{but} \quad \mathcal{T} \not\models \Box a \vee \Box b$$

Equivalence of LTL formulae

Expansion laws

■ Expansion laws (recursive equivalence).

$$\phi \cup \psi \equiv \psi \vee (\phi \wedge \bigcirc (\phi \cup \psi))$$

$$\Diamond \phi \equiv \phi \vee \bigcirc \Diamond \phi$$

$$\Box \phi \equiv \phi \wedge \bigcirc \Box \phi$$

 \implies Blackboard proof for until.

Positive normal form (PNF)

Weak-until PNF

LTL

0000000000

Goal

Retain the full expressiveness of LTL but permit only negations of atomic propositions.

Weak-until PNF for LTL

Given atomic propositions AP, LTL formulae in weak-until positive normal form are given by:

$$\phi ::= \mathsf{true} \mid \mathsf{false} \mid a \mid \neg a \mid \phi \land \psi \mid \phi \lor \psi \mid \bigcirc \phi \mid \phi \ \mathsf{U} \ \psi \mid \phi \ \mathsf{W} \ \psi$$

where $a \in AP$.

Gives a normal form for formulae.

Positive normal form (PNF)

Rewriting to weak-until PNF

To rewrite any LTL formula into weak-until PNF, we push negations inside:

 \implies Solution: $\lozenge ((a \land \neg b) \lor (\neg a \land \neg b) \land \bigcirc \neg c).$

Positive normal form (PNF)

Release PNF

0000000000

LTL

Problem

Rewriting to weak-until PNF may induce an exponential blowup in the size of the formula (number of operators) because of the rewrite rule for until.

Solution: release PNF for LTL

Given atomic propositions AP, LTL formulae in release positive normal form are given by:

$$\phi ::= \mathsf{true} \mid \mathsf{false} \mid a \mid \neg a \mid \phi \land \psi \mid \phi \lor \psi \mid \bigcirc \phi \mid \phi \, \mathsf{U} \, \psi \mid \phi \, \mathsf{R} \, \psi$$
 where $a \in \mathit{AP}$.

We use the rule: $\neg(\phi \cup \psi) \quad \rightsquigarrow \quad \neg \phi \ \mathsf{R} \, \neg \psi$.

⇒ linear increase in the size of the formula.

Back to fairness constraints

Reminder

Let ϕ, ψ be LTL formulae representing that "something is enabled" (ϕ) and that "something is granted" (ψ) . Recall the three types of fairness.

Unconditional fairness constraint

ufair =
$$\Box \Diamond \psi$$
.

Strong fairness constraint

sfair =
$$\Box \Diamond \phi \rightarrow \Box \Diamond \psi$$
.

Weak fairness constraint

wfair =
$$\Diamond \Box \phi \rightarrow \Box \Diamond \psi$$
.

LTL

Fairness assumptions

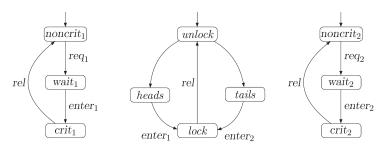
Let fair denote a conjunction of such assumptions. It is sometimes useful to check that all fair executions of a TS satisfy a formula (in contrast to all of them).

Fair satisfaction

Let ϕ be an LTL formula and fair an LTL fairness assumption. We have that $\mathcal{T} \models_{fair} \phi$ iff

 $\forall \sigma \in \mathit{Traces}(\mathcal{T}) \text{ such that } \sigma \models \mathit{fair}, \ \sigma \models \phi.$

Example: randomized arbiter for mutex



Mutual exclusion with a randomized arbiter [BK08].

The arbiter chooses who gets access by tossing a coin: probabilities are abstracted by non-determinism.

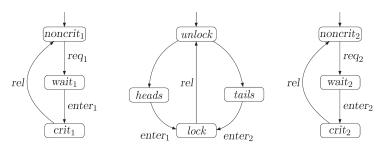
Can process 1 access the section infinitely often?

 \hookrightarrow No, $\mathcal{T}_1 \parallel Arbiter \parallel \mathcal{T}_2 \not\models \Box \Diamond req_1 \rightarrow \Box \Diamond crit_1$ because the arbiter can always choose tails.

LTL

0000000000

Example: randomized arbiter for mutex



Mutual exclusion with a randomized arbiter [BK08].

Intuitively, this is *unfair*: a real coin would lead to this with probability zero.

- \implies LTL fairness assumption: $\Box \Diamond heads \land \Box \Diamond tails$.
 - \hookrightarrow The property is verified on fair executions, i.e., $\mathcal{T}_1 \parallel Arbiter \parallel \mathcal{T}_2 \models_{fair} \bigwedge_{i \in \{1,2\}} (\Box \Diamond req_i \rightarrow \Box \Diamond crit_i).$

LTL

0000000000

Handling fairness assumptions

Given a formula ϕ and a fairness assumption *fair*, we can reduce \models_{fair} to the classical satisfaction \models .

From
$$\models_{\mathit{fair}}$$
 to \models
$$\mathcal{T} \models_{\mathit{fair}} \phi \iff \mathcal{T} \models (\mathit{fair} \rightarrow \phi).$$

⇒ The classical model checking algorithm will suffice.

- 1 LTL: a specification language for LT properties
- 2 Büchi automata: automata on infinite words
- 3 LTL model checking

Why?

LTL

Goal

Express languages of *infinite* words (e.g., $Words(\phi)$) using a *finite* automaton.

⇒ Will be essential to the model checking algorithm for LTL.

Reminder

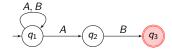
Automata describing languages of finite words.

Definition: non-deterministic finite-state automaton (NFA)

Tuple $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ with

- Q a finite set of states,
- Σ a finite alphabet,
- $\delta \colon Q \times \Sigma \to 2^Q$ a transition function,
- $Q_0 \subseteq Q$ a set of initial states,
- ullet $F\subseteq Q$ a set of accept (or final) states.

Example



- $Q = \{q_1, q_2, q_3\}, \Sigma = \{A, B\}, Q_0 = \{q_1\}, F = \{q_3\}.$
- This automaton is non-deterministic: see letter A on state q_1 .
- Language?
 - ightharpoonup Finite word $\sigma = A_0 A_1 \dots A_n \in \Sigma^*$. A run for σ is a sequence $q_0 q_1 \dots q_{n+1}$ such that $q_0 \in Q_0$ and for all $0 \le i \le n$, $q_{i+1} \in \delta(q_i, A_i)$.
 - ho $\sigma \in \mathcal{L}(\mathcal{A})$ if there exists a run $q_0q_1\dots q_{n+1}$ for σ such that $q_{n+1} \in F$.
 - \hookrightarrow Here, $\mathcal{L}(A) = (A \mid B)^* A B$, i.e., all words ending by "AB."

Regular expressions

Recall that NFAs correspond to **regular languages**, which can be described by *regular expressions*.

Syntax

Regular expressions over letters $A \in \Sigma$ are formed by

$$E ::= \emptyset \mid \varepsilon \mid A \mid E + E' \mid E.E' \mid E^*.$$

Semantics

For regular expression E, language $\mathcal{L}(E) \subseteq \Sigma^*$ obtained by

$$\mathcal{L}(\emptyset) = \emptyset, \quad \mathcal{L}(\varepsilon) = \{\varepsilon\}, \quad \mathcal{L}(A) = \{A\}, \quad \mathcal{L}(E^*) = \mathcal{L}(E)^*,$$

$$\mathcal{L}(E+E')=\mathcal{L}(E)\cup\mathcal{L}(E'),\ \mathcal{L}(E.E')=\mathcal{L}(E).\mathcal{L}(E'),\ \mathcal{L}(E.\emptyset)=\emptyset.$$

Syntactic sugar: we often write $E \mid E'$ for E + E', E^+ for $E.E^*$ and we drop the concatenation operator, i.e., EE' instead of E.E'.

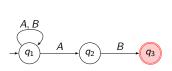
DFAs vs. NFAs

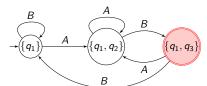
Expressiveness

Deterministic FAs (DFAs) are *expressively equivalent* to NFAs, i.e., for any NFA, there exists a DFA recognizing the same language.

⇒ One can determinize any NFA through subset construction.

⇒ With a potentially exponential blowup!





⇒ Blackboard illustration.

ω -regular languages

Definition

Intuitively, extension of regular languages to infinite words.

Syntax

An ω -regular expression G over Σ has the form

$$G = E_1.F_1^{\omega} + \ldots + E_n.F_n^{\omega} \text{ for } n > 0$$

where E_i , F_i are regular expressions over Σ with $\varepsilon \notin \mathcal{L}(F_i)$.

Semantics

For
$$\mathcal{L} \subseteq \Sigma^*$$
, let $\mathcal{L}^{\omega} = \{ w_1 w_2 w_3 \dots \mid \forall i \geq 1, w_i \in \mathcal{L} \}$.

For
$$G = E_1.F_1^{\omega} + \ldots + E_n.F_n^{\omega}$$
, $\mathcal{L}_{\omega}(G) \subseteq \Sigma^{\omega}$ is given by

$$\mathcal{L}_{\omega}(G) = \mathcal{L}(E_1).\mathcal{L}(F_1)^{\omega} \cup \ldots \cup \mathcal{L}(E_n).\mathcal{L}(F_n)^{\omega}.$$

ω -regular languages

Examples

A language \mathcal{L} is ω -regular if $\mathcal{L} = \mathcal{L}_{\omega}(G)$ for some ω -regular expression G.

Examples for $\Sigma = \{A, B\}$.

- \triangleright Words with infinitely many A's: $(B^*A)^{\omega}$.
- \triangleright Words with finitely many A's: $(A \mid B)^* B^{\omega}$.
- \triangleright Empty language: \emptyset^{ω} (OK because \emptyset is a valid regular expression).

Properties of ω -regular languages

They are *closed* under union, intersection and complementation.

ω -regular languages

Counter-example

Not all languages on infinite words are ω -regular.

E.g., $\mathcal{L} = \{ \text{words on } \Sigma = \{A, B\} \text{ such that } A \text{ appears infinitely often with increasingly many } B's between occurrences of } A \} \text{ is not.}$

Link with LTL?

LTL

We know that every LTL formula ϕ describes a language of infinite words $Words(\phi) \subseteq (2^{AP})^{\omega}$.

 \Longrightarrow We will see that for every LTL formula ϕ , $Words(\phi)$ is an ω -regular language.

The converse is false!

There exist ω -regular languages that cannot be expressed in LTL. E.g.,

$$\mathcal{L} = \Big\{ A_0 A_1 A_2 \dots \in (2^{\{a\}})^{\omega} \mid \forall \ i \ge 0, \ a \in A_{2i} \Big\},\,$$

the language of infinite words over $2^{\{a\}}$ where a must hold in all even positions.

- $\triangleright \ \omega$ -regular expression $G = (\{a\} \ (\{a\} \ | \ \emptyset))^{\omega}$.
- Not expressible in LTL. Intuitively, LTL can count up to $k \in \mathbb{N}$ (e.g., words with at most k occurrences of "a") but not modulo k (e.g., words with "a" every k steps).

Definition

Automata describing languages of infinite words.

 $\triangleright \omega$ -regular languages.

Definition: non-deterministic Büchi automaton (NBA)

Tuple $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ with

- Q a finite set of states,
- Σ a finite alphabet,
- $\delta \colon Q \times \Sigma \to 2^Q$ a transition function,
- $Q_0 \subseteq Q$ a set of initial states,
- $F \subseteq Q$ a set of accept (or final) states.

Same as before?

Acceptance condition

⇒ The automaton is identical, but the acceptance condition is different!

Run

A run for an *infinite* word $\sigma = A_0 A_1 \dots \in \Sigma^{\omega}$ is a sequence $q_0 q_1 \dots$ of states such that $q_0 \in Q_0$ and for all $i \geq 0$, $q_{i+1} \in \delta(q_i, A_i)$.

Accepting run

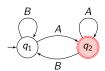
A run is accepting if $q_i \in F$ for **infinitely many** indices $i \in \mathbb{N}$.

Accepted language of ${\cal A}$

 $\mathcal{L}_{\omega}(\mathcal{A}) = \{ \sigma \in \Sigma^{\omega} \mid \text{ there is an accepting run for } \sigma \text{ in } \mathcal{A} \}.$

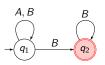
Examples

• Words with infinitely many A's: $(B^*A)^{\omega}$.



Deterministic Büchi automaton (DBA).

■ Words with finitely many A's: $(A \mid B)^* B^{\omega}$.



Non-deterministic Büchi automaton (NBA).

Is there an equivalent DBA?

⇒ We will see that there is not!

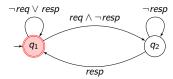
■ Empty language: \emptyset^{ω} .

Modeling an ω -regular property

Liveness property: "once a request is provided, eventually a response shall occur."

- $ightharpoonup \{req, resp\} \subseteq AP \text{ for the TS.}$
- \triangleright NBA \mathcal{A} uses alphabet 2^{AP} .
 - \rightarrow Succinct representation of multiple transitions using propositional logic. E.g., for $AP = \{a, b\}$,

$$q \xrightarrow{a \vee b} q' \text{ stands for } q \xrightarrow{\{a\}} q', \ q \xrightarrow{\{b\}} q', \text{ and } q \xrightarrow{\{a,b\}} q'.$$



NBAs and ω -regular languages

$\mathsf{Theorem}$

The class of languages accepted by NBAs agrees with the class of ω -regular languages.

 \Longrightarrow For any ω -regular property, we can build a corresponding NBA.

 \Longrightarrow For any NBA \mathcal{A} , the language $\mathcal{L}_{\omega}(\mathcal{A})$ is ω -regular.

Idea

Reminder

An ω -regular expression G over Σ has the form

$$G = E_1.F_1^{\omega} + \ldots + E_n.F_n^{\omega}$$
 for $n > 0$

where E_i , F_i are regular expressions over Σ with $\varepsilon \notin \mathcal{L}(F_i)$.

Construction scheme

Use operators on NBAs mimicking operators on ω -regular expressions:

- union of NBAs $(E_1.F_1^{\omega} + E_2.F_2^{\omega})$,
- ω -operator for NFA (F^{ω}) ,
- concatenation of an NFA and an NBA $(E.F^{\omega})$.

Union of NBAs (sketch)

Goal

Mimic $E_1.F_1^{\omega}+E_2.F_2^{\omega}$.

Let $\mathcal{A}^1 = (Q^1, \Sigma, \delta^1, Q_0^1, F^1)$ and $\mathcal{A}^2 = (Q^2, \Sigma, \delta^2, Q_0^2, F^2)$ be two NBAs over the same alphabet with disjoint state spaces.

Union

$$\mathcal{A}^1+\mathcal{A}^2=(Q^1\cup Q^2,\Sigma,\delta,Q^1_0\cup Q^2_0,F^1\cup F^2)$$
 with $\delta(q,A)=\delta^i(q,A)$ if $q\in Q^i$.

 \implies A word is accepted by $\mathcal{A}^1+\mathcal{A}^2$ iff it is accepted by (at least) one of the automata.

$$\Longrightarrow \mathcal{L}_{\omega}(\mathcal{A}^1 + \mathcal{A}^2) = \mathcal{L}_{\omega}(\mathcal{A}^1) \cup \mathcal{L}_{\omega}(\mathcal{A}^2).$$

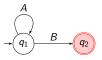
 ω -operator for NFA (sketch 1/2)

Goal

LTL

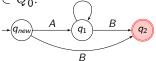
Mimic F^{ω} .

Let $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ be an NFA with $\varepsilon \notin \mathcal{L}(\mathcal{A})$. Example: NFA accepting A^*B .

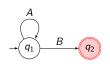


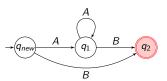
Step 1. If some initial states of \mathcal{A} have incoming transitions or $Q_0 \cap F \neq \emptyset$.

- Introduce new initial state $q_{new} \notin F$.
- Add $q_{new} \xrightarrow{A} q$ iff $q_0 \xrightarrow{A} q$ for some $q_0 \in Q_0$.
- Keep all other transitions of A.
- New $Q_0 = \{q_{new}\}.$



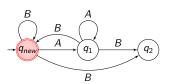
 ω -operator for NFA (sketch 2/2)





Step 2. Build the NBA A' as follows.

- If $q \xrightarrow{A} q' \in F$, then add $q \xrightarrow{A} q_0$ for all $q_0 \in Q_0$.
- Keep all other transitions of A.
- $Q_0' = Q_0 \text{ and } F' = Q_0.$



 \hookrightarrow In practice, state q_2 is now useless and can be removed.

$$\Longrightarrow \mathcal{L}_{\omega}(\mathcal{A}') = \mathcal{L}(\mathcal{A})^{\omega}$$
, i.e., this NBA recognizes $(A^*B)^{\omega}$.

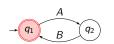
Concatenation of an NFA and an NBA (1/2)

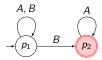
Goal

Mimic $E.F^{\omega}$.

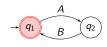
Let $\mathcal{A}^1=(Q^1,\Sigma,\delta^1,Q^1_0,F^1)$ be an NFA and $\mathcal{A}^2=(Q^2,\Sigma,\delta^2,Q^2_0,F^2)$ be an NBA, both over the same alphabet and with disjoint state spaces.

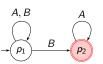
Example: NFA \mathcal{A}^1 with $\mathcal{L}(\mathcal{A}^1) = (AB)^*$ and NBA \mathcal{A}^2 with $\mathcal{L}_{\omega}(\mathcal{A}^2) = (A \mid B)^* B A^{\omega}$.





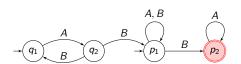
Concatenation of an NFA and an NBA (2/2)





Construction of NBA $\mathcal{A} = (Q = Q^1 \cup Q^2, \Sigma, \delta, Q_0, F = F^2).$

$$\bullet \ \delta(q,A) = \begin{cases} \delta^1(q,A) & \text{if } q \in Q^1 \text{ and } \delta^1(q,A) \cap F^1 = \emptyset \\ \delta^1(q,A) \cup Q^2_0 & \text{if } q \in Q^1 \text{ and } \delta^1(q,A) \cap F^1 \neq \emptyset \\ \delta^2(q,A) & \text{if } q \in Q^2 \end{cases}$$



 $\Longrightarrow \mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}(\mathcal{A}^1).\mathcal{L}_{\omega}(\mathcal{A}^2)$, i.e., this NBA recognizes $(AB)^*(A\mid B)^*BA^{\omega}$.

Checking non-emptiness

Criterion for non-emptiness

Let \mathcal{A} be an NBA. Then,

$$\mathcal{L}_{\omega}(\mathcal{A})
eq \emptyset$$

$$\updownarrow$$

$$\exists q_0 \in Q_0, \exists q \in F, \exists w \in \Sigma^*, \exists v \in \Sigma^+,$$
 $q \in \delta^*(q_0, w) \land q \in \delta^*(q, v),$
i.e., there is reachable accept state on a cycle.

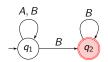
- ⇒ Can be checked in *linear time* by computing reachable strongly connected components (SCCs).
 - ⇒ Important tool for LTL model checking.

NBAs vs. DBAs

Recall that **DFAs** are as expressive as **NFAs**. What about DBAs w.r.t. NBAs?

NBAs are strictly more expressive than DBAs

There exists no DBA \mathcal{A} such that $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}((A \mid B)^*B^{\omega}).$



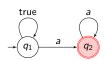
Words with finitely many A's.

⇒ See the book for the proof. Intuition: by contradiction, if such a DBA existed, it would accept some words with infinitely many A's by exploiting determinism to construct corresponding accepting runs.

Is non-determinism really useful for model checking?

Yes. Consider a persistence property of the form "eventually forever", i.e., LTL formula $\phi = \diamondsuit \Box a$ for $AP = \{a\}$.

 \triangleright I.e., exactly $\mathcal{L}_{\omega}((A \mid B)^*B^{\omega})$ for $A = \emptyset$ and $B = \{a\}$.



 \implies Not expressible with a DBA.

- NBAs describe ω -regular languages.
- Several equally expressive variants exist, with different acceptance conditions: Muller, Rabin, Streett, parity and generalized Büchi automata (GNBAs).

⇒ Will help us for LTL model checking.

Definition

Definition: non-det. generalized Büchi automaton (GNBA)

Tuple $\mathcal{G} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$ with

- Q a finite set of states,
- Σ a finite alphabet,
- $\delta \colon Q \times \Sigma \to 2^Q$ a transition function,
- $Q_0 \subseteq Q$ a set of initial states,
- $\mathcal{F} = \{F_1, \dots, F_k\} \subseteq 2^Q \ (k \ge 0 \text{ and } \forall 0 \le i \le k, F_i \subseteq Q).$

Intuition: a GNBA requires to visit each set F_i infinitely often.

Acceptance condition

Accepting run

A run $q_0q_1...$ is accepting if for all $F \in \mathcal{F}$, $q_i \in F$ for infinitely many indices $i \in \mathbb{N}$.

Accepted language of \mathcal{G}

 $\mathcal{L}_{\omega}(\mathcal{G}) = \{ \sigma \in \Sigma^{\omega} \mid \text{ there is an accepting run for } \sigma \text{ in } \mathcal{G} \}.$

For k = 0, all runs are accepting. For k = 1, \mathcal{G} is a simple NBA.

 \triangle Observe the difference between $F=\emptyset$ for an NBA (i.e., no run is accepting) and $\mathcal{F}=\emptyset$ for a GNBA (i.e., all runs are accepting). In fact, $\mathcal{F}=\emptyset$ is equivalent to having $\mathcal{F}=\{Q\}$.

Modeling an ω -regular property

Liveness property: "both processes are infinitely often in their critical section."

 $ightharpoonup \{ crit_1, crit_2 \} \subseteq AP \text{ for the TS.}$

true
$$q_1$$
 q_2 q_3 q_4 q_5 q_7 q_8 q_8

 $\triangleright \mathcal{F} = \{\{q_2\}, \{q_3\}\}$. Both must be visited infinitely often!

GNBAs vs. NBAs

From GNBA to NBA

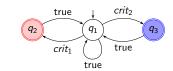
For any GNBA \mathcal{G} , there exists an equivalent NBA \mathcal{A} (i.e., $\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{L}_{\omega}(\mathcal{A})$) of size $|\mathcal{A}| = \mathcal{O}(|\mathcal{G}| \cdot |\mathcal{F}|)$.

Construction scheme starting from \mathcal{G} with $\mathcal{F} = \{F_1, \dots, F_k\}$.

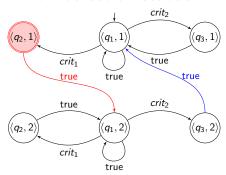
- \blacksquare Make k copies of Q arranged in k levels.
- 2 At level $i \in \{1, ..., k\}$, keep all transitions leaving states $q \notin F_i$.
- 3 At level $i \in \{1, ..., k\}$, redirect transitions leaving states $q \in F_i$ to level i + 1 (level k + 1 := level 1).
- 4 $Q_0' = \{\langle q_0, 1 \rangle \mid q_0 \in Q_0\}$, i.e., initial states in level 1; and $F' = \{\langle q, 1 \rangle \mid q \in F_1\}$, i.e., final states in level 1.
- \implies Works because by construction, F' can only be visited infinitely often if the accept states (F_i) at every level i are visited infinitely often.

GNBAs vs. NBAs

Example



⇒ Blackboard illustration.



- 1 LTL: a specification language for LT properties
- 2 Büchi automata: automata on infinite words
- 3 LTL model checking

Back to LTL model checking

Decision problem

Definition: LTL model checking problem

Given a TS \mathcal{T} and an LTL formula ϕ , decide if $\mathcal{T} \models \phi$ or not.

- + if $\mathcal{T} \not\models \phi$ we would like a counter-example (trace witnessing it).
 - ⇒ Model checking algorithm via automata-based approach (Vardi and Wolper, 1986).

Intuition.

- \triangleright Represent ϕ as an NBA.
- hd Use it to try to find a path π in $\mathcal T$ such that $\pi \not\models \phi$.
- \triangleright If one is found, a prefix of it is an *error trace*. Otherwise, $\mathcal{T} \models \phi$.

Back to LTL model checking

Key observation

LTL

$$\mathcal{T} \models \phi \qquad \text{iff} \quad Traces(\mathcal{T}) \subseteq Words(\phi)$$

$$\text{iff} \quad Traces(\mathcal{T}) \cap ((2^{AP})^{\omega} \setminus Words(\phi)) = \emptyset$$

$$\text{iff} \quad Traces(\mathcal{T}) \cap Words(\neg \phi) = \emptyset$$

$$\text{iff} \quad Traces(\mathcal{T}) \cap \mathcal{L}_{\omega}(\mathcal{A}_{\neg \phi}) = \emptyset$$

$$\text{iff} \quad \mathcal{T} \otimes \mathcal{A}_{\neg \phi} \models \Diamond \Box \neg F$$

Line 3 uses negation for paths.

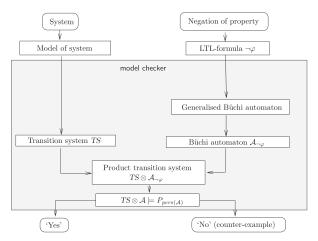
Line 4 uses the existence of an NBA for any ω -regular language and the fact that all LTL formulae describe ω -regular languages.

 \implies We will see it in the following.

Line 5 reduces the language intersection problem to the satisfaction of a persistence property over the product TS $\mathcal{T} \otimes \mathcal{A}_{\neg \phi}$. The idea is to check that no trace yielded by \mathcal{T} will satisfy the acceptance condition of the NBA $\mathcal{A}_{\neg\phi}$.

Overview of the algorithm

LTL

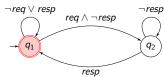


Overview of the automata-based approach for LTL model checking [BK08].

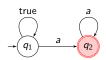
Examples

LTL

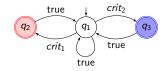
■ NBA for \Box (req $\rightarrow \Diamond$ resp).



■ NBA for ◊□a.



■ GNBA for $\Box \Diamond crit_1 \land \Box \Diamond crit_2$.



Intuition of the construction (1/3)

Goal

For an LTL formula ϕ , build GNBA \mathcal{G}_{ϕ} over alphabet 2^{AP} such that $\mathcal{L}_{\omega}(\mathcal{G}_{\phi}) = Words(\phi)$.

- Assume ϕ only contains core operators \wedge , \neg , \bigcirc , \cup (w.l.o.g., see core syntax) and $\phi \neq$ true (otherwise, trivial GNBA).
- What will be the states of \mathcal{G}_{ϕ} ?
 - \triangleright Let $\sigma = A_0 A_1 A_2 \ldots \in Words(\phi)$. Idea: "expand" the sets $A_i \subseteq AP$ with subformulae ψ of ϕ .
 - \triangleright Obtain $\overline{\sigma} = B_0 B_1 B_2 \dots$ such that

$$\psi \in B_i \iff A_i A_{i+1} A_{i+2} \dots \models \psi.$$

 $\triangleright \overline{\sigma}$ will be a run for σ in the GNBA \mathcal{G}_{ϕ} .

Intuition of the construction (2/3)

- Let $\phi = a \cup (\neg a \wedge b)$ and $\sigma = \{a\} \{a, b\} \{b\} \dots$
 - \triangleright Letters B_i are subsets of

$$\underbrace{\left\{a, \neg a, b, \neg a \land b, \phi\right\}}_{\text{subformulae of } \phi} \cup \underbrace{\left\{\neg b, \neg \left(\neg a \land b\right), \neg \phi\right\}}_{\text{their negation}}.$$

- ▶ Negations also considered for technical reasons.
- $A_0 = \{a\}$ is extended with $\neg b$, $\neg(\neg a \land b)$ and ϕ as they hold in σ and no other subformula holds.
- $A_1 = \{a, b\}$ with $\neg(\neg a \land b)$ and ϕ as they hold in $\sigma[1..]$ and no others.
- $A_2 = \{b\}$ with $\neg a$, $\neg a \land b$ and ϕ as they hold in $\sigma[2..]$ and no others. Etc.

$$\overline{\sigma} = \underbrace{\{a, \neg b, \neg (\neg a \land b), \phi\}}_{B_0} \underbrace{\{a, b, \neg (\neg a \land b), \phi\}}_{B_1} \underbrace{\{\neg a, b, \neg a \land b, \phi\}}_{B_2} \dots$$

⇒ In practice, this is not done on words, but on the automaton.

Intuition of the construction (3/3)

- Sets B_i will be the states of GNBA \mathcal{G}_{ϕ} .
- $\overline{\sigma} = B_0 B_1 B_2 \dots$ is a run for σ in \mathcal{G}_{ϕ} by construction.
- Accepting condition chosen such that $\overline{\sigma}$ is accepting if and only if $\sigma \models \phi$.
- How do we encode the meaning of the logical operators?
 - $\triangleright \land, \neg$ and true impose consistent formula sets B_i in the states (e.g., a and $\neg a$ is not possible).
 - encoded in the *transition relation* (must be consistent).
 - U split according to the expansion law into local condition (encoded in states) and next-step one (encoded in transitions).
 - ▶ Meaning of U is the *least solution* of the expansion law (see book) \Longrightarrow reflected in the choice of acceptance sets for \mathcal{G}_{ϕ} .

Closure of a formula

Definition: closure of ϕ

Set $closure(\phi)$ consisting of all sub-formulae ψ of ϕ and their negation $\neg \psi$.

E.g., for
$$\phi = a U (\neg a \wedge b)$$
,

$$closure(\phi) = \{a, \neg a, b, \neg b, \neg a \land b, \neg (\neg a \land b), \phi, \neg \phi\}.$$

$$\hookrightarrow |closure(\phi)| = \mathcal{O}(|\phi|).$$

Sets B_i are subsets of $closure(\phi)$.

But not all subsets are interesting!

⇒ Restriction to elementary sets.

Intuition: a set B is *elementary* if there is a path π such that B is the set of all formulae $\psi \in closure(\phi)$ with $\pi \models \psi$.

Elementary sets of formulae

Definition: elementary set

A set of sub-formulae $B \subseteq closure(\phi)$ is elementary if:

- **1** B is logically consistent, i.e., for all $\phi_1 \wedge \phi_2, \psi \in closure(\phi)$,
 - $ho \phi_1 \land \phi_2 \in B \iff \phi_1 \in B \land \phi_2 \in B$,
 - $\triangleright \ \psi \in B \implies \neg \psi \notin B$,
 - ightharpoonup true $\in closure(\phi) \Longrightarrow true \in B$.
- **2** *B* is locally consistent, i.e., for all $\phi_1 \cup \phi_2 \in closure(\phi)$,
 - $\triangleright \phi_2 \in B \implies \phi_1 \cup \phi_2 \in B$,
 - $\triangleright \phi_1 \cup \phi_2 \in B \land \phi_2 \notin B \Longrightarrow \phi_1 \in B.$
- **3** *B* is maximal, i.e., for all $\psi \in closure(\phi)$,
 - $\triangleright \ \psi \notin B \Longrightarrow \neg \psi \in B.$

LTL

Elementary sets: examples (1/2)

Let
$$\phi = a \cup (\neg a \wedge b)$$
:
 $closure(\phi) = \{a, \neg a, b, \neg b, \neg a \wedge b, \neg (\neg a \wedge b), \phi, \neg \phi\}.$

- Is $B = \{a, b, \phi\} \subset closure(\phi)$ elementary?
 - → No. Logically and locally consistent but not maximal because $\neg a \land b \in closure(\phi)$, yet $\neg a \land b \notin B$ and $\neg (\neg a \land b) \notin B$.
- Is $B = \{a, b, \neg a \land b, \phi\} \subset closure(\phi)$ elementary?
 - \hookrightarrow No. It is not logically consistent because $a \in B$ and $\neg a \land b \in B$.
- Is $B = \{\neg a, \neg b, \neg(\neg a \land b), \phi\} \subset closure(\phi)$ elementary?
 - → No. Logically consistent but not locally consistent because $\phi = a \cup (\neg a \wedge b) \in B$ and $\neg a \wedge b \notin B$ but $a \notin B$.

Elementary sets: examples (2/2)

Let
$$\phi = a \cup (\neg a \wedge b)$$
:
 $closure(\phi) = \{a, \neg a, b, \neg b, \neg a \wedge b, \neg (\neg a \wedge b), \phi, \neg \phi\}.$

All elementary sets?

⇒ Blackboard construction.

All elementary sets:

$$B_{1} = \{a, b, \neg(\neg a \land b), \phi\},\$$

$$B_{2} = \{a, b, \neg(\neg a \land b), \neg \phi\},\$$

$$B_{3} = \{a, \neg b, \neg(\neg a \land b), \phi\},\$$

$$B_{4} = \{a, \neg b, \neg(\neg a \land b), \neg \phi\},\$$

$$B_{5} = \{\neg a, \neg b, \neg(\neg a \land b), \neg \phi\},\$$

$$B_{6} = \{\neg a, b, \neg a \land b, \phi\}.$$

Construction of \mathcal{G}_{ϕ} (1/2)

For formula ϕ over AP, let $\mathcal{G}_{\phi} = (Q, \Sigma = 2^{AP}, \delta, Q_0, \mathcal{F})$ where:

- $Q = \{B \subseteq closure(\phi) \mid B \text{ is elementary}\},\$
- $Q_0 = \{B \in Q \mid \phi \in B\},\$
- $\mathcal{F} = \{ F_{\phi_1 \cup \phi_2} \mid \phi_1 \cup \phi_2 \in closure(\phi) \}$ with

$$F_{\phi_1 \cup \phi_2} = \{ B \in Q \mid \phi_1 \cup \phi_2 \notin B \lor \phi_2 \in B \}.$$

Intuition: for any run $B_0B_1B_2...$, if $\phi_1 U \phi_2 \in B_0$, then ϕ_2 must eventually become true (ensured by the acceptance condition).

> Observe that $\mathcal{F} = \emptyset$ if no until in ϕ . \implies All runs are accepting in this case.

Construction of \mathcal{G}_{ϕ} (2/2)

The transition relation $\delta \colon Q \times 2^{AP} \to 2^Q$ is given by:

- For $A \in 2^{AP}$ and $B \in Q$, if $A \neq B \cap AP$, then $\delta(B,A) = \emptyset$.

 Intuition: transitions only exist for the set of propositions that are true in B, i.e., $B \cap AP$ is the only readable letter at state B.
- If $A = B \cap AP$, then $\delta(B, A)$ is the set of all elementary sets of formulae B' satisfying
 - (i) for every $() \psi \in closure(\phi), () \psi \in B \iff \psi \in B'$, and
 - (ii) for every $\phi_1 \cup \phi_2 \in closure(\phi)$,

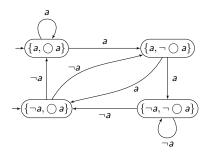
$$\phi_1 \cup \phi_2 \in B \iff \Big(\phi_2 \in B \vee (\phi_1 \in B \wedge \phi_1 \cup \phi_2 \in B')\Big).$$

Intuition: (i) and (ii) reflect the semantics of \bigcirc and \bigcup operators, (ii) is based on the expansion law.

Example: $\phi = \bigcirc a$

 $closure(\phi) = \{a, \neg a, \bigcirc a, \neg \bigcirc a\}.$

 \implies Blackboard construction of the GNBA + proof.



$$Q = \{ \{a, \bigcirc a\}, \{a, \neg \bigcirc a\}, \{\neg a, \bigcirc a\}, \{\neg a, \neg \bigcirc a\} \},$$

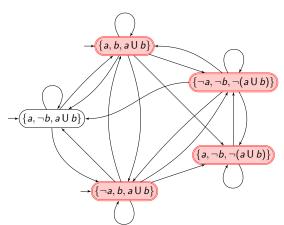
•
$$Q_0 = \{ \{a, \bigcirc a\}, \{\neg a, \bigcirc a\} \},$$

$$\mathcal{F} = \emptyset$$
.

Example: $\phi = a \cup b \ (1/3)$

 $closure(\phi) = \{a, \neg a, b, \neg b, a \cup b, \neg (a \cup b)\}.$

⇒ Blackboard construction of the GNBA.

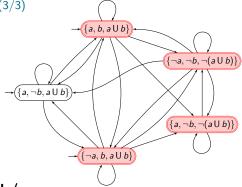


Example: $\phi = a \cup b$ (2/3)

Some explanations (see blackboard for more).

Let
$$B_1 = \{a, b, a \cup b\}$$
, $B_2 = \{\neg a, b, a \cup b\}$, $B_3 = \{a, \neg b, a \cup b\}$, $B_4 = \{\neg a, \neg b, \neg(a \cup b)\}$ and $B_5 = \{a, \neg b, \neg(a \cup b)\}$.

- $\triangleright Q = \{B_1, B_2, B_3, B_4, B_5\}, Q_0 = \{B_1, B_2, B_3\}.$
- $\triangleright \ \mathcal{F} = \{F_{a \cup b}\} = \{\{B_1, B_2, B_4, B_5\}\}.$ $\hookrightarrow \mathcal{G}_{\phi} \text{ is actually a simple NBA}.$
- \triangleright Labels omitted for readability (recall label is $B \cap AP$).
- ⊳ From B_1 (resp. B_2), we can go anywhere because $a \cup b$ is already fulfilled by $b \in B_1$ (resp. B_2).
- \triangleright From B_3 , we need to go where a U b holds: B_1 , B_2 or B_3 .
- ⊳ From B_4 , we can go anywhere because $\neg(a \cup b)$ is already fulfilled by $\neg a$, $\neg b \in B_4$.
- \triangleright From B_5 , we need to go where $\neg(a \cup b)$ holds: B_4 or B_5 .



Sample words/runs:

- $\sigma = \{a\}\{a\}\{b\}^{\omega} \in Words(\phi)$ has accepting run $\overline{\sigma} = B_3B_3B_2^{\omega}$ in \mathcal{G}_{ϕ} .
- $\sigma = \{a\}^{\omega} \notin Words(\phi)$ has only one run $\overline{\sigma} = B_3^{\omega}$ in \mathcal{G}_{ϕ} and it is not accepting since $B_3 \notin F_{a \cup b}$.

Construction

Idea: LTL → GNBA → NBA.

Theorem: LTL to NBA

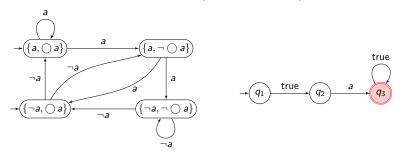
For any LTL formula ϕ over propositions AP, there exists an NBA \mathcal{A}_{ϕ} with $Words(\phi) = \mathcal{L}_{\omega}(\mathcal{A}_{\phi})$ which can be constructed in time and space $2^{\mathcal{O}(|\phi|)}$.

Sketch

- **1** Construct the GNBA \mathcal{G}_{ϕ} .
 - $\triangleright |closure(\phi)| = \mathcal{O}(|\phi|) \text{ and } |Q| \le 2^{|closure(\phi)|} = 2^{\mathcal{O}(|\phi|)}.$
 - ightharpoonup # accepting sets of $\mathcal{G}_{\phi} = \#$ until-operators in $\phi \leq \mathcal{O}(|\phi|)$.
- **2** Construct the NBA \mathcal{A}_{ϕ} .
 - \triangleright # states of $\mathcal{A}_{\phi} = |Q| \times$ # accepting sets of \mathcal{G}_{ϕ} .

Can we do better? (1/3)

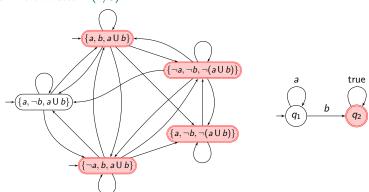
The algorithm presented here is conceptually simple but may lead to unnecessary large GNBAs (and thus NBAs).



Example: the right NBA also recognizes () a but is *smaller*.

Can we do better? (2/3)

LTL



Example: the right NBA also recognizes a U b but is much smaller.

Can we always do better?

Can we do better? (3/3)

In practice, there exist more efficient (but more complex) algorithms in the literature.

Still, the exponential blowup cannot be avoided in the worst-case!

Theorem: lower bound for NBA from LTL formula

There exists a family of LTL formulae ϕ_n with $|\phi_n| = \mathcal{O}(poly(n))$ such that every NBA \mathcal{A}_{ϕ_n} for ϕ_n has at least 2^n states.

⇒ Proof in the next slides.

Lower bound proof (1/2)

Let AP be arbitrary and non-empty, i.e., $|2^{AP}| > 2$. Let

$$\mathcal{L}_n = \left\{ A_1 \dots A_n A_1 \dots A_n \sigma \mid A_i \subseteq \mathit{AP} \, \wedge \, \sigma \in (2^\mathit{AP})^\omega \right\} \quad \text{for } n \geq 0.$$

This language is expressible in LTL, i.e., $\mathcal{L}_n = Words(\phi_n)$ for

$$\phi_n = \bigwedge_{a \in AP} \bigwedge_{0 \le i < n} (\bigcirc^i a \longleftrightarrow \bigcirc^{n+i} a).$$

Polynomial length: $|\phi_n| = \mathcal{O}(|AP| \cdot n^2)$.

Claim: any NBA \mathcal{A} with $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_n$ has at least 2^n states.

Lower bound proof (2/2)

Assume A is such an automaton. Words $A_1 \dots A_n A_1 \dots A_n \emptyset^{\omega}$ belong to \mathcal{L}_n , hence are accepted by \mathcal{A} .

- \triangleright For every word $A_1 \dots A_n$ of length n, \mathcal{A} has a state $g(A_1 \dots A_n)$ which can be reached after consuming $A_1 \dots A_n$.
- \triangleright From $q(A_1 ... A_n)$, it is possible to visit an accept state infinitely often by reading the suffix $A_1 \dots A_n \emptyset^{\omega}$.
- \triangleright If $A_1 \dots A_n \neq A'_1 \dots A'_n$, then $A_1 \dots A_n A'_1 \dots A'_n \emptyset^{\omega} \notin \mathcal{L}_n = \mathcal{L}_{\omega}(\mathcal{A}).$
- \triangleright Therefore, states $q(A_1 \dots A_n)$ are all pairwise different.
- \triangleright Since each A_i can take $2^{|AP|}$ different values, the number of different sequences $A_1 \dots A_n$ of length n is $(2^{|AP|})^n > 2^n$ (by non-emptiness of AP).
- \triangleright Hence, the NBA has at least 2^n states.

LTL vs. NBAs

What have we learned?

Corollary

Every LTL formula expresses an ω -regular property, i.e., for all LTL formula ϕ , $Words(\phi)$ is an ω -regular language.

Why? Because LTL can be transformed to NBA and NBAs coincide with ω -regular languages.

The converse is false!

Recall
$$\mathcal{L} = \left\{ A_0 A_1 A_2 \ldots \in (2^{\{a\}})^{\omega} \mid \forall i \geq 0, \ a \in A_{2i} \right\}.$$

 \implies There are ω -regular properties not expressible in LTL.

Back to the model checking algorithm for LTL

What do we still need?

$$\mathcal{T} \models \phi \qquad \text{iff} \quad Traces(\mathcal{T}) \subseteq Words(\phi)$$

$$\text{iff} \quad Traces(\mathcal{T}) \cap ((2^{AP})^{\omega} \setminus Words(\phi)) = \emptyset$$

$$\text{iff} \quad Traces(\mathcal{T}) \cap Words(\neg \phi) = \emptyset$$

$$\text{iff} \quad Traces(\mathcal{T}) \cap \mathcal{L}_{\omega}(\mathcal{A}_{\neg \phi}) = \emptyset$$

$$\text{iff} \quad \mathcal{T} \otimes \mathcal{A}_{\neg \phi} \models \Diamond \Box \neg F$$

It remains to consider the last line.

Two remaining questions:

- **1** How to compute the product TS $\mathcal{T} \otimes \mathcal{A}_{\neg \phi}$?
- **2** How to check persistence, i.e., $\mathcal{T} \otimes \mathcal{A}_{\neg \phi} \models \Diamond \Box \neg F$?

Product of TS and NBA

Definition

Definition: product of TS and NBA

Let $\mathcal{T}=(S,Act,\longrightarrow,I,AP,L)$ be a TS without terminal states and $\mathcal{A}=(Q,\Sigma=2^{AP},\delta,Q_0,F)$ a non-blocking NBA. Then, $\mathcal{T}\otimes\mathcal{A}$ is the following TS:

$$\mathcal{T} \otimes \mathcal{A} = (S', Act, \longrightarrow', I', AP', L')$$
 where

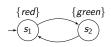
- $S' = S \times Q$, AP' = Q and $L'(\langle s, q \rangle) = \{q\}$,
- \longrightarrow is the smallest relation such that if $s \xrightarrow{\alpha} t$ and $q \xrightarrow{L(t)} p$, then $\langle s, q \rangle \xrightarrow{\alpha} \langle t, p \rangle$,
- $I' = \{ \langle s_0, q \rangle \mid s_0 \in I \land \exists q_0 \in Q_0, q_0 \xrightarrow{L(s_0)} q \}.$

Product of TS and NBA

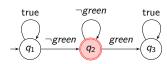
Example: simple traffic light

LTL

Simple traffic light with two modes: red and green. LTL formula to check $\phi = \Box \Diamond green$.



 $TS \mathcal{T}$ for the traffic light.



NBA $\mathcal{A}_{\neg \phi}$ *for* $\neg \phi = \Diamond \Box \neg green$.

 \Longrightarrow Blackboard construction of $\mathcal{T} \otimes \mathcal{A}_{\neg \phi}$.

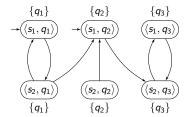
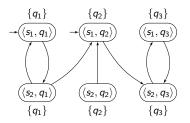


Illustration (1/2)

It remains to check $\mathcal{T} \otimes \mathcal{A}_{\neg \phi} \models \Diamond \Box \neg F$ to see that $\mathcal{T} \models \phi$.



Here,
$$\mathcal{T} \otimes \mathcal{A}_{\neg \phi} \stackrel{?}{\models} \Diamond \Box \neg F$$
 with $F = \{q_2\}$.

Yes! State $\langle s_1, q_2 \rangle$ can be seen at most once, and state $\langle s_2, q_2 \rangle$ is not reachable.

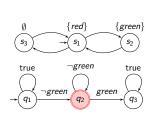
 \Longrightarrow There is no common trace between $\mathcal T$ and $\mathcal A_{\neg\phi}$.

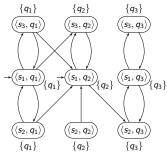
$$\Longrightarrow \mathcal{T} \models \phi$$
.

Illustration (2/2)

LTL

Slightly revised traffic light: can switch off to save energy. Same formula ϕ (hence same NBA $\mathcal{A}_{\neg \phi}$).





Here, $\mathcal{T} \otimes \mathcal{A}_{\neg \phi} \not\models \Diamond \Box \neg F$ with $F = \{q_2\}$. See for example path $\langle s_1, q_1 \rangle (\langle s_3, q_2 \rangle \langle s_1, q_2 \rangle)^{\omega}$ that visits q_2 infinitely often. \implies Path $\pi = (s_1 s_3)^{\omega}$ of \mathcal{T} gives trace $\sigma = (\{\text{red}\} \emptyset)^{\omega}$ which is accepted by $\mathcal{A}_{\neg \phi}$ (run $q_1(q_2)^{\omega}$), i.e., $\sigma \not\models \phi$.

Algorithm: cycle detection

As for checking non-emptiness, we reduce the problem to a cycle detection problem.

Persistence checking and cycle detection

Let \mathcal{T} be a TS without terminal states over AP and Φ a propositional formula over AP, then

$$\mathcal{T} \not\models \Diamond \Box \Phi$$
 \updownarrow

 $\exists s \in Reach(\mathcal{T}), s \not\models \Phi \text{ and } s \text{ is on a cycle in the graph of } \mathcal{T}.$

In particular, it holds for $\Phi = \neg F$ as needed for LTL model checking (with F the acceptance set of the NBA $\mathcal{A}_{\neg\phi}$).

Algorithmic solutions for cycle detection

- **I** Compute the reachable SCCs and check if one contains a state satisfying $\neg \Phi$.
 - \hookrightarrow Linear time but requires to construct entirely the product TS $\mathcal{T} \otimes \mathcal{A}_{\neg \phi}$ which may be very large (exponential).
- 2 Another solution: on-the-fly algorithms.
 - ightharpoonup Construct \mathcal{T} and $\mathcal{A}_{\neg\phi}$ in parallel and simultaneously construct the reachable fragment of $\mathcal{T}\otimes\mathcal{A}_{\neg\phi}$ via nested depth-first search.
 - → Construction of the product "on demand".
 - More efficient in practice (used in software solutions such as Spin).

⇒ See the book for more.

Still, the complexity of LTL model checking remains high!

Wrap-up of the automata-based approach

$$\mathcal{T} \models \phi \qquad \text{iff} \quad Traces(\mathcal{T}) \subseteq Words(\phi)$$

$$\text{iff} \quad Traces(\mathcal{T}) \cap ((2^{AP})^{\omega} \setminus Words(\phi)) = \emptyset$$

$$\text{iff} \quad Traces(\mathcal{T}) \cap Words(\neg \phi) = \emptyset$$

$$\text{iff} \quad Traces(\mathcal{T}) \cap \mathcal{L}_{\omega}(\mathcal{A}_{\neg \phi}) = \emptyset$$

$$\text{iff} \quad \mathcal{T} \otimes \mathcal{A}_{\neg \phi} \models \Diamond \Box \neg F$$

Complexity of this approach

The time and space complexity is $\mathcal{O}(|\mathcal{T}|) \cdot 2^{\mathcal{O}(|\phi|)}$.

Complexity of LTL model checking

Complexity of the model checking problem for LTL

The LTL model checking problem is PSPACE-complete.

⇒ See the book for a proof by reduction from the membership problem for polynomial-space deterministic Turing machines.

Recall that bisimulation and simulation quotienting (Ch. 2) preserve LTL properties while being computable in polynomial time: interesting to do before model checking!

References I

C. Baier and J.-P. Katoen.

Principles of model checking.
MIT Press, 2008.