
Formal Methods for System Design

Chapter 1: Formal verification

Mickael Randour

Mathematics Department, UMONS

September 2023



Motivations Formal verification Synthesis Course organization

1 Motivations

2 Formal verification in a nutshell

3 Going further: synthesis

4 Course organization

Chapter 1: Formal verification Mickael Randour 1 / 45



Motivations Formal verification Synthesis Course organization

1 Motivations

2 Formal verification in a nutshell

3 Going further: synthesis

4 Course organization

Chapter 1: Formal verification Mickael Randour 2 / 45



Motivations Formal verification Synthesis Course organization

Let’s talk about bugs. . .

Insects

Plenty of them.

Pesky as hell.

Serve a purpose.

Computer bugs

Plenty of them.

Pesky as hell.

At best useless. . . In the
worst-case, threaten the purpose of
the software and can be harmful!

Chapter 1: Formal verification Mickael Randour 3 / 45



Motivations Formal verification Synthesis Course organization

It’s all about money (1/4)
AT&T long-distance service (1990)

Bug caused continuous cascade
reboots of all long-distance
switches.

Impact: 9-hour outage.

Costs: 60-100 million US$.

Source: wrong interpretation of
break statement (c code).

Chapter 1: Formal verification Mickael Randour 4 / 45



Motivations Formal verification Synthesis Course organization

It’s all about money (2/4)
Pentium FDIV (1994)

Bug in the f loating point division unit
(FDIV).

Impact: inaccurate results for 1 in 9 · 109

random floating point divisions.

Costs: ∼500 million US$ (replacement of
all processors).

+ PR nightmare for Intel!

Source: 5 missing entries in a 1066-entry
look-up table.

Chapter 1: Formal verification Mickael Randour 5 / 45



Motivations Formal verification Synthesis Course organization

It’s all about money (3/4)
Ariane 5 (1996)

Loss of guidance after 37s followed by
self-destruction.

Costs: > 500 million US$.

Source: data conversion from 64-bit
floating point to 16-bit signed integer
causing overflow in the hardware.

� Appropriate software handler was
disabled to improve efficiency.

Chapter 1: Formal verification Mickael Randour 6 / 45



Motivations Formal verification Synthesis Course organization

It’s all about money (4/4)
Mars Climate Orbiter (1998)

Atmosphere entry at wrong angle
resulting in disintegration.

Costs: 327 million US$ (mission
failure).

Source: ground software sending
instructions calculated in the wrong
units (pound-seconds instead of
newton-seconds as the
NASA-Lockheed contract specified).

Chapter 1: Formal verification Mickael Randour 7 / 45



Motivations Formal verification Synthesis Course organization

It’s all about safety (1/2)
Therac-25 radiation therapy (1985-1987)

Two modes: one “safe” direct mode and
one very powerful mode requiring
appropriate shielding. Bug caused
mismatch of the chosen mode.

Impact: several deaths by radiation
poisoning.

Source: design error causing race
condition in the software managing the
choice of mode.

� Bug already present in previous
machines but with no consequence due
to hardware limitations.

↪→ Never reuse code without proper
testing in the new environment!

Chapter 1: Formal verification Mickael Randour 8 / 45



Motivations Formal verification Synthesis Course organization

It’s all about safety (2/2)
The doomsday bug (1983)

Soviet nuclear early-warning system (Oko)
falsely reports five incoming US missiles.

� Three weeks after the Soviet military had
shot down Korean Air Lines Flight 007.

Possible impact: WW3?

Avoided by Stanislav Petrov who judged
the report to be a false alarm.

Source: bug in the Soviet satellite
detection system.

Chapter 1: Formal verification Mickael Randour 9 / 45



Motivations Formal verification Synthesis Course organization

Ubiquity of software integration

Software is everywhere:

embedded systems,

communication protocols,

transportation systems. . .

Reliability increasingly depends on software!

� E.g., cars: fuel injection, central locking unit, ABS, ESP. . .

. . . and less legal systems (VW’s pollution defeat device).

Defects can be fatal and extremely costly.

� Safety-critical systems.

� Mass-produced systems (correcting a bug is a huge task).

Chapter 1: Formal verification Mickael Randour 10 / 45



Motivations Formal verification Synthesis Course organization

Batch processing systems vs. reactive systems

Batch processing system

Computes results.

Correctness easier to assess.

Reactive system
Continuous interaction with
the environment:

� requests information,

� reacts to events.

Correctness very difficult to
assess.

Chapter 1: Formal verification Mickael Randour 11 / 45



Motivations Formal verification Synthesis Course organization

Characteristics of reactive systems

Not necessarily terminating: in general, termination (deadlock) is
to avoid.

Should always be ready for interaction.

� Interaction = basic unit of computation: event - condition - action.

Sequence of interactions = computation.

Allowed ordering of interactions determine correctness.

Specific constraints of embedded systems: energy consumption,
real-time, sparse resources, etc.

⇒ Specific methods are needed to analyze those systems.

Chapter 1: Formal verification Mickael Randour 12 / 45



Motivations Formal verification Synthesis Course organization

1 Motivations

2 Formal verification in a nutshell

3 Going further: synthesis

4 Course organization

Chapter 1: Formal verification Mickael Randour 13 / 45



Motivations Formal verification Synthesis Course organization

Hardware and software verification (1/4)

A posteriori verification [BK08].

Properties to check obtained from
the system’s specification

Chapter 1: Formal verification Mickael Randour 14 / 45



Motivations Formal verification Synthesis Course organization

Hardware and software verification (2/4)
Some classical techniques

Software verification.

Peer-reviewing : static analysis of uncompiled code.

� Useful (catches from 31% to 93%, median 60%, of defects).

� Used in ∼80% of software projects.

� Difficult to catch dynamic issues: concurrency, algorithmic
defects. . .

Testing : dynamic, confronts the software to test suites.

� Can catch dynamic defects.

� 30% to 50% of software cost devoted to testing.

↪→ More time spent on validation than on construction!

� Exhaustive testing infeasible.

↪→ Testing can only show the presence of errors, not their
absence!

Chapter 1: Formal verification Mickael Randour 15 / 45



Motivations Formal verification Synthesis Course organization

Hardware and software verification (3/4)
Catching bugs: the sooner, the better

Software lifecycle: error introduction, detection and repair
costs [BK08].

⇒ We need methods that can detect bugs early in a
software’s life.

Chapter 1: Formal verification Mickael Randour 16 / 45



Motivations Formal verification Synthesis Course organization

Hardware and software verification (4/4)
Some classical techniques

Hardware verification.

Preventing errors is vital:

� high fabrication costs,

� fixing defects after delivery is difficult (no patch),

� high quality expectations.

>50% of Application-Specific Integrated Circuits do not work
properly after initial design and fabrication.

>70% of the total development time is devoted to error
detection and prevention.

Some techniques: emulation (∼ testing), simulation
(∼ testing executed on models), hardware testing (to find
fabrication faults).

Chapter 1: Formal verification Mickael Randour 17 / 45



Motivations Formal verification Synthesis Course organization

Formal verification

Goal

Given

a formal model of the system (= how it behaves)

and a formal specification (= what it should do and not do),

check that the system satisfies the specification by
(semi-)automatically generating some sort of mathematical proof .

Usefulness

Early integration of verification in the design process.

More effective verification (higher coverage).

Reduced verification time.

⇒ safety ↗ and costs ↘

Chapter 1: Formal verification Mickael Randour 18 / 45



Motivations Formal verification Synthesis Course organization

Horizontal vs. vertical verification

Horizontal: system vs. spec.

Vertical: system vs. refinement.

Synthesis: correctness-preserving
refinement.

↪→ More on that later!

Chapter 1: Formal verification Mickael Randour 19 / 45



Motivations Formal verification Synthesis Course organization

Checkable properties
Non-exhaustive selection (informal definitions)

Safety: unwanted system states are never reached.

� E.g., avoid deadlock.

Liveness: desired behavior eventually happen.

� E.g., coffee machine eventually provides coffee.

Persistence: after some time, desired state set is never left.

� E.g., after initial warm-up, the system always stays online.

Fairness: infinitely done requests are infinitely satisfied.

� E.g., access to critical section (mutex).

Quantitative properties: energy consumption, response
time, etc.

↪→ Much more complex.

Chapter 1: Formal verification Mickael Randour 20 / 45



Motivations Formal verification Synthesis Course organization

Specification formalisms

Formal encoding of such properties requires appropriate
specification formalisms.

� Most are temporal logics (LTL, CTL, etc).

� Not all logics can express all properties!

Trade-off between expressiveness and tractability.

↪→ think about decidability and complexity : e.g., no hope of
checking termination for Turing-powerful models.

Chapter 1: Formal verification Mickael Randour 21 / 45



Motivations Formal verification Synthesis Course organization

Limits of formal verification

Is the model right?

� Is it a faithful representation of the implementation?

Is the specification right?

� Often difficult to formalize, from oral language to logical
formulae.

� Difficult to validate: does it really represent the expected
behavior of the system?

Is the specification complete?

� Are all important properties specified?

Chapter 1: Formal verification Mickael Randour 22 / 45



Motivations Formal verification Synthesis Course organization

Three approaches to formal verification (1/2)

Deductive methods (logical inference)

Method: provide a formal proof that the property holds.

Tools: theorem provers and proof assistants/checkers (e.g.,
HOL, Isabelle).

Applicable if the system has the form of a mathematical
theory .

Model-based simulation/testing

Method: test the property by exploring possible behaviors of
the model.

Applicable if the system defines an executable model .

Chapter 1: Formal verification Mickael Randour 23 / 45



Motivations Formal verification Synthesis Course organization

Three approaches to formal verification (2/2)

Model checking

Method: systematic check of the property in all states of the
model.

Tools: model checkers (e.g., Spin, NuSMV, Uppaal).

Applicable if the system generates a finitely representable
behavioral model .

Efficient techniques and tools.

If the property is not satisfied, can provide counter-examples
(thus guiding repairs).

↪→ main focus of this course.

Chapter 1: Formal verification Mickael Randour 24 / 45



Motivations Formal verification Synthesis Course organization

Model checking process

Schematic view of the model checking approach [BK08].

Formal model?
↪→ Ch. 2 (TSs)

and Ch. 6 (MCs).

Formal specification?
↪→ Ch. 3, 4 (LTL, CTL)

and Ch. 6 (PCTL).

Chapter 1: Formal verification Mickael Randour 25 / 45



Motivations Formal verification Synthesis Course organization

Pros of model checking

Pros:

widely applicable (hardware, software, protocols),

allows partial verification (most relevant properties),

heavily automated,

growing industrial interest,

counter-example generation,

sound mathematical foundations,

not biased to the most probable scenarios (in contrast to
testing).

Chapter 1: Formal verification Mickael Randour 26 / 45



Motivations Formal verification Synthesis Course organization

Cons of model checking

Cons:

focus on control-intensive applications (reactive systems) – less
on data-oriented applications (batch processing systems),

model checking is only as good as the model,

decidability and complexity issues (state explosion problem),

completeness is not guaranteed (if the specification omits
important properties).

All in all:

a quite effective technique to expose design errors.

↪→ interesting addition to most design processes.

Chapter 1: Formal verification Mickael Randour 27 / 45



Motivations Formal verification Synthesis Course organization

Industry usage
Model checking techniques are increasingly present in industrial
design processes.

Security . A flaw in the Needham-Schroeder public-key
protocol remained undiscovered for 17 years before being
revealed by model checking [Low96].

Model checkers for C, C++ and Java . Developed and used by
Microsoft, Digital, NASA. Successfully applied to the design
of device drivers.

In 2013, Facebook invested in a startup specialized in software
verification: Monoidics.

Even medium-size businesses may benefit from formal
methods.
↪→ E.g., CASSTING FP7 European project with industrial

partners EnergiNord (energy provider) and Seluxit (smart
homes and smart grids).

Chapter 1: Formal verification Mickael Randour 28 / 45



Motivations Formal verification Synthesis Course organization

Some awards for model checking advances

E. Clarke A. Emerson J. Sifakis M. Vardi P. Wolper
Turing Award 2007 Gödel Prize 2000

Clarke, Emerson and Sifakis “for their role in developing
model checking into a highly effective verification technology,
widely adopted in the hardware and software industries.”

Vardi and Wolper “for work on model checking with finite
automata.”

Many important people: Büchi, Petri, Rabin, Scott, Floyd,
Hoare, Dijkstra, Pnueli, Milner, Queille, Kozen, Harel, Bryant,
McMillan, Holzmann, Alur, Dill, Thomas, Henzinger. . .

Chapter 1: Formal verification Mickael Randour 29 / 45



Motivations Formal verification Synthesis Course organization

1 Motivations

2 Formal verification in a nutshell

3 Going further: synthesis

4 Course organization

Chapter 1: Formal verification Mickael Randour 30 / 45



Motivations Formal verification Synthesis Course organization

Synthesis vs. verification (1/2)

Verification operates a posteriori : it checks that an existing model
satisfies a specification.

What if we tried to work the other way around?

Verification

� Input: model M, spec. S

� Output: M
?

|= S.

Synthesis

� Input: spec. S
� Output: model M such that
M |= S, or No if none exists.

Goal

Automatic design of a suitable system from the specification.

Chapter 1: Formal verification Mickael Randour 31 / 45



Motivations Formal verification Synthesis Course organization

Synthesis vs. verification (2/2)

Synthesis is much more difficult!

↪→ Consider the role of the uncontrollable environment for
reactive systems.

In practice, instead of checking a temporal formula (spec.) against
an automaton-based model, one may consider a two-player game
between the system and its environment (assumed antagonistic).

� Basic model, much richer ones exist.

� Maybe Ch. 7?

� We look for winning strategies for the system.

Chapter 1: Formal verification Mickael Randour 32 / 45



Motivations Formal verification Synthesis Course organization

Synthesis process

system
description

environment
description

informal
specification

model as
a game

model as
winning

objectives

synthesis

is there a
winning

strategy ?

empower system
capabilities
or weaken

specification
requirements

strategy
=

controller

no yes

Synthesis process [Ran13].

1 Can one player guarantee
victory?

2 Can we decide which one?

3 How complex his strategy
needs to be?

Important research area
(incl. in UMONS).

Chapter 1: Formal verification Mickael Randour 33 / 45



Motivations Formal verification Synthesis Course organization

Some great minds behind synthesis

A. Church P. Ramadge W. Wonham A. Pnueli R. Rosner
Turing Award 1996

Seminal papers [Chu57, RW87, PR89].

Chapter 1: Formal verification Mickael Randour 34 / 45



Motivations Formal verification Synthesis Course organization

1 Motivations

2 Formal verification in a nutshell

3 Going further: synthesis

4 Course organization

Chapter 1: Formal verification Mickael Randour 35 / 45



Motivations Formal verification Synthesis Course organization

Teaching staff

Mickael Randour James C. A. Main
Professor Teaching assistant
(lectures) (exercise sessions, project supervision)

We are available for discussion and help if needed. Please do not
hesitate to contact us!

Feedback on the course is welcome!

Chapter 1: Formal verification Mickael Randour 36 / 45



Motivations Formal verification Synthesis Course organization

Learning outcomes

At the end of the course, students should be able to

(i) model reactive systems using mathematical formalisms,

(ii) analyze these models using classical verification techniques,

(iii) use the results of this analysis to debug their models/systems,

(iv) master the core mathematical concepts and algorithms for
prominent techniques,

(v) use verification tools supporting these techniques.

Chapter 1: Formal verification Mickael Randour 37 / 45



Motivations Formal verification Synthesis Course organization

Course material

Slides available on Moodle.

� Inspired by the reference book and slides by Thierry Massart
(ULB), Jean-François Raskin (ULB), Joost-Pieter Katoen
(RWTH Aachen), etc.

Notes in class: pay attention to the blackboard!

Optional reference book: Principles of Model Checking by
C. Baier and J.-P. Katoen, MIT Press, 2008 [BK08].

Chapter 1: Formal verification Mickael Randour 38 / 45



Motivations Formal verification Synthesis Course organization

Course schedule

Check Hyperplanning and announcements via Moodle.

Exercise sessions

Exercise sheets will be available on Moodle.

Crucial for the oral exam.

� Many exercises will be available for each session.

↪→ Feedback available from the TA.

Question/discussion sessions will also be scheduled within the
theory lectures.

Chapter 1: Formal verification Mickael Randour 39 / 45



Motivations Formal verification Synthesis Course organization

Course outline

Detailed outline available on Moodle.

1 Formal verification

2 Modeling systems

3 Linear temporal logic

4 Computation tree logic

5 Symbolic model checking

6 Model checking probabilistic systems

7 TBD: book chapter / article

Exercise sessions

Chapter 1: Formal verification Mickael Randour 40 / 45



Motivations Formal verification Synthesis Course organization

General instructions and grading

Please read the detailed instructions on Moodle.

Individual oral exam at the end of Q1 (AAs 1 and 2).

Group tool presentations (AAs 1 and 2).

Presentations of advanced work (AA3).

Group project (AA3).

Chapter 1: Formal verification Mickael Randour 41 / 45



Motivations Formal verification Synthesis Course organization

Oral exam

You should prove that

you understand the theory,

you master the essential techniques.

Format

One large question with 20 minutes to prepare (course material
allowed, around 35% of the grade) followed by smaller questions
exploring all the course, without preparation.

Mastering the exercise sessions is crucial!

Chapter 1: Formal verification Mickael Randour 42 / 45



Motivations Formal verification Synthesis Course organization

Tool presentation (groups)

Goal

Choose a verification tool in the list (see Moodle) and prepare a
30-minute presentation of the tool for the class.

Evaluation: quality of the presentation.

All students of the group are expected to participate in the
presentation and to know the tool.

Date for the presentations: TBA.
Choice of the tool before 01/11/2023 (first come, first served).

Chapter 1: Formal verification Mickael Randour 43 / 45



Motivations Formal verification Synthesis Course organization

Presentations of advanced work

Goal

Study an article or book chapter on an advanced topic and present
it to the other students: 4-hour lectures.

Evaluation: quality of the presentation, understanding of the
subject. Students will also be questioned on all presentations.

Chapter 1: Formal verification Mickael Randour 44 / 45



Motivations Formal verification Synthesis Course organization

Project

Details to be refined (#students, etc).

In a nutshell:

combine learning and formal methods,

continuous and common project,

teachers as coaches.

; Check the instructions for the last project.

Chapter 1: Formal verification Mickael Randour 45 / 45



References I

C. Baier and J.-P. Katoen.

Principles of model checking.
MIT Press, 2008.

A. Church.

Applications of recursive arithmetic to the problem of circuit synthesis.
Summaries of the Summer Institute of Symbolic Logic, 1:3–50, 1957.

G. Lowe.

Breaking and fixing the Needham-Schroeder public-key protocol using FDR.
In Tools and Algorithms for the Construction and Analysis of Systems, pages 147–166. Springer, 1996.

A. Pnueli and R. Rosner.

On the synthesis of a reactive module.
In Proc. of POPL, pages 179–190. ACM Press, 1989.

M. Randour.

Automated synthesis of reliable and efficient systems through game theory: A case study.
In Proceedings of the European Conference on Complex Systems 2012, Springer Proceedings in Complexity
XVII, pages 731–738. Springer, 2013.

P.J. Ramadge and W.M. Wonham.

Supervisory control of a class of discrete event processes.
SIAM journal on control and optimization, 25(1):206–230, 1987.

Chapter 1: Formal verification Mickael Randour 46 / 45


